a2 United States Patent

US009411527B2

10) Patent No.: US 9,411,527 B2

AKkutsu et al. 45) Date of Patent: *Aug. 9, 2016
(54) STORAGE SYSTEM AND DATA (56) References Cited
MANAGEMENT METHOD
U.S. PATENT DOCUMENTS
(71) Applicant: Hitachi, Ltd., Chiyoda-ku, Tokyo (JP) 5497457 A % 31996 FOId wmomooon 714/6.24
. . .. 5,522,032 A * 5/1996 Franaszeketal. ... 714/6.24
(72) Inventors: Hiroaki Akutsg, Yokohama (JP); Junji 6.098.191 A 82000 Yamamoto ef al.
Ogawa, Sagamihara (JP) 6,516,425 B1* 2/2003 Belhadjetal. 714/6.12
7,073,024 B1* 7/2006 Chilton 710114
(73) Assignee: Hitachi, Ltd., Tokyo (JP) 7,080,278 B1* 7/2006 Kleimanetal. 714/6.24
Continued
(*) Notice: Subject to any disclaimer, the term of this ¢)
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 0 days.
. EP 2365439 Al 9/2011
Thl.S patent is subject to a terminal dis- TP 09-231015 A 9/1997
claimer. (Continued)
(21) Appl. No.: 14/721,608 OTHER PUBLICATIONS
(22) Filed: May 26, 2015 International Search Report and Written Opinion on application
PCT/JP2012/004669 mailed Dec. 19, 2012; 12 pages.
(65) Prior Publication Data o
Primary Examiner — Kamini Patel
US 2015/0254016 Al Sep. 10, 2015 (74) Attorney, Agent, or Firm — Foley & Lardner LLP
(57) ABSTRACT
Related U.S. Application Data Storage system comprises a second storage apparatus, which
(63) Continuation of application No. 13/696,370, filed as is coupled to multiple first storage apparatuses and is of a
application No. PCT/JP2012/004669 on Jul. 23,2012, different type from the first storage apparatuses, and a first
now Pat. No. 9,047,220. control device, which exists either inside or outside of the
second storage apparatus. Row of stripes comprising multiple
(51) Int.Cl. data elements obtained by segmenting a prescribed data unit,
GO6F 1100 (2006.01) and a redundancy code for rebuilding the data elements, is
GO6F 3/06 (2006.01) distributively stored in multiple first storage apparatuses,
GO6F 11/10 (2006.01) which are more numerous than the total number of stripe data
(52) US.Cl elements, which are either the data elements or redundancy
i) code, in the row of stripes. The row of stripes is configured to
CPC e 2 '0 gogf 3?;;;, gi(o)égyo 12)(’) gogf 3?;;;, enable the rebuilding of the stripe data elements even when a
(01); i (01); failure has occurred in up to a prescribed allowable number,
. 11/1092 .(2013.'01)’ GOGF 2003/0692 (2013.01) which is two or more, of the first storage apparatuses storing
(58) Field of Classification Search the stripe data elements of the relevant row of stripes.

USPC ittt eeenceneeneeien 714/6.24
See application file for complete search history.

7 Claims, 37 Drawing Sheets

100

Higher-level
storage apparatus

10

Transfer
buffer
DXBF]

)

[- -

H Lower-levelsiorge T35 | yn’
1 apparatus group =Y

H — —— |

1
1170

Lower-level storage
anparatus group

US 9,411,527 B2
Page 2

(56)

7,246,301

7,246,303
2003/0237019
2004/0255223
2005/0166083
2008/0256292
2009/0013213
2009/0132851
2010/0107003
2011/0197023

References Cited

U.S. PATENT DOCUMENTS

B2
B2 *
Al*
Al
Al*
Al*
Al*
Al
Al
Al

7/2007
7/2007
12/2003
12/2004
7/2005
10/2008
1/2009
5/2009
4/2010
8/2011

Chawla

Bansal etal. 714/800
Kleiman et al.
Chawla
Freyetal.cccoccovvnnen 714/6
Flynn et al. .. 711/114
Kalman et al. 714/20
Pruthi

Kawaguchi

Iwamitsu et al.

2012/0084600 Al 4/2012 Kidney et al.

2012/0131265 Al* 5/2012 Koltsidasetal. 711/103
2012/0131270 Al 5/2012 Hemmi

2013/0047028 Al* 2/2013 Daikokuyaetal. 714/6.3
2013/0173955 Al* 7/2013 Hallaketal. 714/6.24

2013/0326140 Al 12/2013 Iwamitsu et al.

FOREIGN PATENT DOCUMENTS

JP 2008-191966 A 8/2008
JP 2010-267037 A 11/2010
JP 2011-192257 A 9/2011

* cited by examiner

U.S. Patent Aug. 9,2016 Sheet 1 of 37 US 9,411,527 B2

20

/\1/0 Pl

|_ Host Management
5 I server

External storage apparatus

40 Network
111 115 100
Higher-level Port Port Maintenance I/F
storage apparatus 150
110 oL 140
FEPK 125/
141
- I A BEPK ~~
| 120 130 - Transfer
| |~/ pavd arty 11 puff
121 MPPK 122 CMPK. operator [| (Dxer)
N pad T
MP — LM BE 143
1 |~/
I controller
]
' 16,1 DKU e i
/——I SW|tch SWltch I:I—
(I ______________________ 4 - _I
1 1170
I Lower level storage 180 W
1 apparatus group 1
e e e T T I
, Switch Switch
q = ———+————+———f—— ———L—
1 170
: ower—level storage
|.____________Ep_Pa_ral“igLOEP _______
]

U.S. Patent

Aug. 9,2016

185

185

Port

181
~S

Sheet 2 of 37

Lower-level
storage apparatus

| 182
o 183
L~/

ProcessorH

Memory

180

184
Backend |~/
controller
Flash memory Flash memory od
chip chip
I I 185
Flash memory Flash memory |~/

chip

chip

US 9,411,527 B2

U.S. Patent Aug. 9,2016 Sheet 3 of 37 US 9,411,527 B2

Fig. 3

50

Virtual volume
51

52

Virtual pool
space

180 180 180 180 180 180 180 180

U.S. Patent Aug. 9,2016 Sheet 4 of 37 US 9,411,527 B2

Fig. 4

V1
2

\
\

180

U.S. Patent Aug. 9,2016 Sheet 5 of 37 US 9,411,527 B2
Fig. 5
200
Shared memory 210 220
Pl ~/
Page mapping table Parcel mapping table
230 240
Pavd
Drive status table Cache management table
Fig. 6
Page mapping table 14\51 0
211 212 213 214 215
aoF pavi v a7 o7
Virtual Logical Pool Virtual pool Physical
volume page number | space page
number number number number
1 1 0 2 0
22 0 2 1
12 1000 1 3 0
1003 1 3 1

U.S. Patent Aug. 9,2016 Sheet 6 of 37 US 9,411,527 B2

Fig. 7
Parcel mapping table 220
221 222 223 224 225 226
o7 ~ -~ -~ o~ ~
Virtual Extent # | Drive Physical Physical | Parcel
pool offset # | drive # parcel # | status
space
number
2 0 0] 3 1
1 6 0
2 2 2
3 1 1 Rebuild
required
3 10 0 16 0
1 8 1
2 15 2
3 9 0]
Fig. 8
g 230
Drive status table
231 232 233
Pl vl Pl
Virtual pool Physical drive number Status
space humber
2 0 Normal
1 Abnormal
(R/W not possible)
Normal
3 8 Normal
9 Normal
15 Normal

U.S. Patent Aug. 9,2016 Sheet 7 of 37 US 9,411,527 B2
Fig. 9
Cache management table 240
241 242 243 244 245
o ~ ~/ o~ ~/
Virtual Volume Cache slot Destage Dirty bitmap
volume | slot number inhibit flag
number | number
2 0 5(Data), OFF 101000101...
7(Parity)
1 - - -
999 6(Data) , OFF 010110010...
2(Parity)
3 0 4(Data), OFF 001000001...
3(Parity)
1 - - -
499 - - -
Fig. 10
122
Local memory 1220 1221
Py o

Read/write program

Collection write program

1222
~

1223
pavd

Normal write program

Rebuild program

1224
pavd

1225
A~

High-speed data
rebuild program

Normal data
rebuild program

U.S. Patent Aug. 9,2016 Sheet 8 of 37

Fig. 11

l Start |

v S10

< Write command? \/<\/Y

N (Read command)

A 4

US 9,411,527 B2

S11
~/

Write data to cache memory

Y

r

S12
~

S13

Notify host of completion

A 4
Rebuild-required
Parcel exists in
access range? Y

N A 4

815

Collection
read process

Normal read process ,314
A
$16
Transfer data to host L~

End

U.S. Patent Aug. 9,2016 Sheet 9 of 37 US 9,411,527 B2

Fig. 12

Target different slot

y S21
‘/ Unreflected data in \<\/
'\ cache memory? / N
Y
Y 522
Destage inhibit-in-
progress slot? v
N
h 4 S23
Rebuild-required
Parcel in access
nge?
N
S24
\ 4 ~ f /\§25
Collection write Normal write
process process

End

U.S. Patent Aug. 9,2016 Sheet 10 of 37 US 9,411,527 B2

Fig. 13

S41
Is there a rebuild-
incomplete Parcel? N

Y

Y

i S42
Data rebuild L~

process
. S43
All Parcel stripe
N data rebuilt?
Y
S44
v ~

Configure Parcel status to
rebuilt (rebuild not required)

End

U.S. Patent Aug. 9,2016 Sheet 11 of 37 US 9,411,527 B2

Fig. 14
S51

/ Target area not
allocated to logical
Y\ page”?

VN 52

[Calculate location of drive (lower-level storage apparatus L~/
rebuild-source area and rebuild-destination area

Y $53
Inhibit destage of CM slot related to rebuild area L~
]
Y
Issue parity-rebuild read command
to lower-level storage

v S55
Execute data transfer process, prepare partially |~/

rebuilt data by executing operation (XOR) for
parity rebuild process, and transfer to DXBF

554

A S57

Commandissuedto \ A/
N all target BE path
groups?
b Y

Issue parity-rebuild write command to rebuild-
destination lower-level storage apparatus

¥ S59

Lower-level storage apparatus creates and |~/
stores rebuild data

2 S60
Release destage-inhibit for cache slot related to |~
rebuild area

End

U.S. Patent

Aug. 9, 2016

Sheet 12 of 37 US 9,411,527 B2

Fig. 15

100 Lower-level
| Higher-level storage
storage 143 apparatus #0
apparatus A 180
A~/
(1) Issue parity
rebuild read
command BE
controller
<€ Lower-level (b) Processor of lower-
storage level storage apparatus
(2) Receive “ apparatus #1 #1 copies data from
result data lower-level storage
“ apparatus #0
142 (d)TransfeN
S data Npnq.p! N npq
DXBF |/
iD1ep (c) Execute (a) Reserve buffer
——- XOR operation (e) Release buffer
143 _
(3) Issue P Lov;/er level
ity-rebuil 3] storage
parity apparatus #2
write command | gg \— ‘
controller| |
' (h) Processor of lower-
(9) Transfer Lower-level level storage apparatus
data storage #3 copies data from
apparatus #3 lower-level storage
apparatus #2
(i) Execute 3--,
XOR operation 1D1+P1
and write result | e\ = ===m (f) Reserve buffer
to rebuild

destination

() Release buffer

U.S. Patent

Aug. 9,2016 Sheet 13 of 37

Fig. 16

| Start l

\ S61

/ Target area not >/‘/

allocated to logical
\ page?
v N

Calculate location of lower-level storage
apparatus rebuild-source area and rebuild-
destination area

y

Reserve rebuild-source area CM slot

\2

S62
A~/

$S63

MP transfers data from lower-level storage
apparatus to CM via DXBF

v

Implement for all S66
target lower-level
N storage apparatuses?

v Y

S67

| Reserve rebuild-destination area CM slot

¥

Perform operation based on rebuild-source data
in CM to create rebuild data, and write to CM

S68
L~/

¥

Release rebuild-source area CM slot

$69
L~

\

End

US 9,411,527 B2

U.S. Patent Aug. 9,2016 Sheet 14 of 37 US 9,411,527 B2

Fig. 17

300

Pool setting — Pool #0

310
High-speed rebuild mode: @ ON O OFF

U.S. Patent Aug. 9,2016 Sheet 15 of 37 US 9,411,527 B2

Fig. 18

Virtual volume 50

Virtual pool space
54 A54 - ghace 54 54 5
57 D o T e A 4 - - =L i T 56
D21 [D3 1 D41 D51 D6 1] P _1 I 53
55 D22 [ps2fpazfps2f P2 a2 oo |-
D1 3f D23 D33fpa3] P3| a3]ps3])De3y:l
D24foD3a]Pa] aafoas]nss]nes ?|
< S .‘» 5
IBIEN | IBZEH (X hINA N
A Y ~
D12 JJ D2 2 Js\ y ‘o4 /2 | '
D1 3 || D2_3 \\\ Al Y (I D43 | :
hY
D1_4 || D2 4 N /’ / b 4 E I 56
T V
54 54 Y| I /% saf 1
D3 2 P
D3 3 |
1
p3aft /| ___l-- [180
— / N o (el b L _l —_
(e M= et T | 5
x| syl |.‘.‘ 1 57
N L O gl
| ST | I | ‘ ol
Q_2 ‘
Q4 D6 4 I~ 7
5 =
S
180 180 180 180 180 180 180 180

U.S. Patent

Aug. 9, 2016 Sheet 16 of 37 US 9,411,527 B2
Fig. 19
Galois computation coefficient table 250
251 252 253
Patd PV Patd
RAID type Coefficient | Value
6D2P Al 01101110101
A2 10101110101 ...
A3 10101011101
A4 01001100100. ..
AS 01110100101...
A5 11100101011
AT 01010101101
A8 10010100100. ..
14D2P Al 01101110101
A2 10101110101...
A3 10101011101
A4 01001100100...
A5 01110100101...
A8 11100101011
A7 01010101101
A8 01001100100...
A® 01110100101...
A0 11100101011
Al 10101110101
A2 01001100100...
A™3 01110100101...
Al 11100101011
Al 01010101101
A™S 01101110101
ATS 10101110101

U.S. Patent Aug. 9,2016 Sheet 17 of 37 US 9,411,527 B2

Fig. 20

#| Category | Loss Lost data | Method for creating partially
category | type rebuilt data
1| RAIDS Single Dm Send one type of
failure data(P+ZDi)
2 P Send one type of data(ZDi)
3| RAID6 Single Dm Send one type of
failure data(P+2Di)
4 P Send one type of data(zDi)
5 Q Send one type of
data(ZAl x Di)
6 Double Dm, Dn Send two types of data
failure (P+ZDi, Q+ZAi x Di)

<Remark: Rebuild method>
Dm = A-QQ + As™-PP

Dn = As-QQ + As*-PP

(PP =P + Di)

(QQ = Q + ZAi % Di)

7 Dm, P Send two types of data
(ZDi, Q+XAl x Di)

8 Dm, Q Send two types of data
(P+ZDi, ZAl x Di)

9 P, Q Send two types of data

(Di, A x Di)

U.S. Patent Aug. 9, 2016

Fig. 21

A

Sheet 18 of 37

Estimate data rebuild effect

S71

A 4

S72

process effective?

~S
Y< Improved data rebuild > N

A 4

High-speed data
rebuild process

S73
I~/

Normal data
rebuild process

End

S74
|~/

US 9,411,527 B2

U.S. Patent

US 9,411,527 B2

Aug. 9,2016 Sheet 19 of 37

Fig. 22

| Start |

‘L S75
High-speed data ~
rebuild process
‘L S76
Y High-speed data
rebuild process
failed?
A 4 N
Issue instruction to related S77
lower-level storage to L~
cancel rebuild
S78

Nor_mal data »;
rebuild process

End

U.S. Patent

Aug. 9,2016

Sheet 20 of 37

Fig. 23

External

storage apparatus

41
Port |~/
42 43
\ | / pavl
ProcessorH Memory
| 44
Backend |~/
controller
4{’/\ Flash memory Flash memory 45
chip chip
I I
45
45 [Flash memory Flash memory |~/

chip

chip

40

US 9,411,527 B2

U.S. Patent

Aug. 9,2016

Sheet 21 of 37

Fig. 24

Higher-level 100
storage ~
apparatus

(1) Issue

External
storage
apparatus #0

parity-rebuild
read Port
command

(2) Receive
result data

142 (d)Transfe

IR

111
(3) Issue rad
parity-rebuilg=—
write Port >

command

(g) Transfer
data

(i) Execute XOR
operation and write
result to rebuild
destination

40

External
storage
apparatus #1

(b) Processor of
storage apparatus #1
copies data from

(c) Execute
XOR operation|

storage apparatus #0

(a) Reserve buffer
(e) Release buffer

External
storage
apparatus #2

40

(h) Processor of

External
storage
apparatus #3

storage apparatus #3
copies data from storage
apparatus #2

40

(f) Reserve buffer
() Release buffer

US 9,411,527 B2

U.S. Patent Aug. 9,2016 Sheet 22 of 37 US 9,411,527 B2
Fig. 25
Parcel mapping table 260
261 262 263 264 265 266 267
i o7 o o o Pyl ~
Virtual Extent | Drive Physical Physical | Parcel Rebuild
pool # offset drive # parcel # status data type
space #
number
2 0 0 3 1
1 6 0
2 2 2
3 1 1 Rebuild
required
3 2 4 Partially D1+P
rebuilt
data
stored
3 10 0 16 0
1 8 1
2 15 2
3 9 0

U.S. Patent

Aug. 9, 2016 Sheet 23 of 37 US 9,411,527 B2
Fig. 26
140 Lower-level storage
Higher-level apparatus #0
storage ™
t
apparatus D1 180
L~/
s 170
v
BE
controller Lower-level storage
apparatus #1
180
N/
Lower-level starage
apparatus #2
Reserve
new
Parcel
143 Lower-level storage
~ < apparatus #3
BE || 180
contraller L~ ‘;/70

Lower-level storage

< apparatus #4 180
Reserve
new
Parcel

U.S. Patent Aug. 9,2016 Sheet 24 of 37 US 9,411,527 B2

Fig. 27

140
4 Higher-level [~/ Lower-level storage
storage apparatus #0
apparatus
ppara 180
L~/
by 170
BE ol
controller B Lower-level storage
iy apparatus #1
N ~
180
|~/
Lower-level storage
142 apparatus #2
pavd ~N
DXBF
J’-, 180
1D1+P] ~
[
D1+P
—
Release
Parcel when
done using
Lower-level storage
143 | apparatus #3
~ 180
T —
™ ol
BE 170
controller
|24
Lower-level storage
apparatus #4
r= —E— - N
I p1+p 1 | D2
Buffer
area Release
Parcel when

done using

U.S. Patent

Aug. 9, 2016 Sheet 25 of 37 US 9,411,527 B2

Fig. 28

140
Higher-level | A~/ Lower-level storage
storage apparatus #0
apparatus
= TS
180
143
P 170
v
BE
] Lower-level storage
controller apparatus #1
P 180
Lower-level storage
apparatus #2
180
XOR |__Fl_)
Buffer
Rebuild D1 D1 D1+P area
in new
Parcel
Lower-level storage
/\1/43 < apparatus #3
BE 180
controller | | | ~s
170
_————/ W
Lower-level storage
C apparatus #4 D
180
of
v

U.S. Patent

Aug. 9,2016

Sheet 26 of 37

Fig. 29

- 140
Higher-level

storage
apparatus

143
=/

BE

controller |

Rebuild P
in new
Parcel

Lower-level storage
apparatus #0

Lower-level storage
apparatus #1

—d

)

180

Lower-level storage
apparatus #2 180

US 9,411,527 B2

170

Lower-level storage
apparatus #3

BE
controller |

180

~——

1 Lower-level storage
apparatus #4

e ———

=1 |0

N—

170

U.S. Patent

Aug. 9, 2016 Sheet 27 of 37
Fig. 30
. 140
Higher-level Lower-level storage
storage apparatus #0 180
apparatus |~/
143
=
BE
I~ Lower-level storage
controller apparatus #1
180
|~/
Lower-level storage
apparatus #2
180
A~
143 Lower-level storage 180
P apparatus #3 o~
BE 1 1
controller D @
Lower-level storage
apparatus #4
180
b~
(02

US 9,411,527 B2

170

170

U.S. Patent Aug. 9,2016 Sheet 28 of 37 US 9,411,527 B2

Fig. 31

Rebuilt bitmap 270
271 272 273
o i o7
Physical drive # | Physical parcel # Rebuild bitmap
1 0 011010011...
1 011010011...
2 111110011. ..
Fig. 32
Parcel mapping table 280
281 282 283 284 285 286
Pavd Pl ~ Pl -~ ~7
Virtual Extent Drive Physical Physical | Parcel
pool # offset # drive # parcel # | status
space
number
2 0 0 3 1
1 6 0
2 2 2
3 1 1 Rebuild
required
3 2 4 Rebuilt
data
stored
3 10 0 16 0
1 8 1
2 15 2
3 9 0

U.S. Patent Aug. 9,2016 Sheet 29 of 37 US 9,411,527 B2

Fig. 33

Drive status table 290
291 292 293 294 295
pavd Pavd oF o/ Pad
Virtual Physical drive | Number of | Number of | Status
pool number errors errors
space (Read) (Write)
number
2 0 0 0 Normal
1 333 333 Abnormal
(Inaccessible)
7 0 0 Normal
3 8 0 132 Abnormal (W
not possible)
9 0 120 Abnormal (W
not possible)
15 0 0 Normal

U.S. Patent Aug. 9,2016 Sheet 30 of 37 US 9,411,527 B2

Fig. 34
l Start l

¥ S81

/ Does number of write
errors exceed
Y \ threshold? N

S82

Does number of read
errors exceed
Y threshold? N
883

< ReadOnly media? >;

N

S84 $85
~

A 4 /\/ A 4

Configure drive status Configure drive status
to inaccessible to W not possible

End

U.S. Patent

Aug. 9,2016 Sheet 31 of 37

Fig. 35

S91

/ Unreflected data in

N

N Does number of failed
drives exceed number
of Parity?

US 9,411,527 B2

'\ cache memory? /

yL—

S92

Rebuild-required
v Parcel in access
?
S93 range?
o7

N

I_l §95

o Nod
< Rebuild bit ON? /Y

N
S96
P

Read old data from unwritable
drive, merge with new data
and store in parcel

A

Collection write

process Rebuild bit ON process

A 4

S98
pavd

594
r P S97
-~/

Normal write

v

End

US 9,411,527 B2

oglL 08L 08l

¢ €d

g pallsToliv dlis 8 val[s Eally zally rall+ © || s]d |Ir sallyr sallr va
clo I 214 |le odllz c callekallz Lallz ol 4 l{zPpallz valle vallz ea
Z d Iz 9a][o <allz 9 zd|lz valle o9 dllo adlle sallo val|e callz za
L adlle <eal[r valle g 1allr ol v alls ealli salls ralli <alls zallr ta
L e | s | < | s | s | e L s | a1 S i S

Sheet 32 of 37

Aug. 9,2016

U.S. Patent

9¢ "Bi4

US 9,411,527 B2

Sheet 33 of 37

Aug. 9,2016

U.S. Patent

(surewsu 1obue) yoeg-Ado))

(924nos Jo uoneunssp a)a|dwos yoeg-Adon

Adoo Buipnjour)
psX20|q 8AlIg

(821nos
10 uoieunsep
ssauboud ul) Adoo Buipnjoul)
peMoo|g 8ALQ

& BuioBuo
ssalboid
ul pjingal

a)e|dwoo plingey Emﬂ%oo

oeq

pax20|q 2ALQ

g)o|dwod
plingss Ayuold

(s181dW0o
s$)oeg-Adod ||v)
ale|dwod
Moeqg-Adon

G1s
818|dwoo pjingsy

Pa¥o0Ia AL

€1s

ssaiboud
ul piingsd
Auoud

alnjeq

PR CELNG pINGoY |

R a1 Pa¥30|q SAlQ

L1S
0 Aouepunpay | Aouepunpey Z Aouepunpsy

L€ B4

U.S. Patent

Aug. 9, 2016 Sheet 34 of 37 US 9,411,527 B2
Fig. 38
Stripe table 300
301 302 303 304 305 306
pavd Pavd pavi pavd ~ pavd
Physical | Physical | Virtual Extent # | Drive Parcel
drive # parcel# | pool offset # status
space
number
1 0 2 0 0 Rebuild
required
1 1 2 0 1 Rebuild
required
1 2 2 0 2 Rebuild
required
1 3 2 0 3 Rebuild
required
2 0 2 2 0
2 1 2 2 1
2 2 2 2 2
2 3 2 2 3

U.S. Patent

Aug. 9,2016

Fig. 39

l Start |

A

Sheet 35 of 37

Compute virtual pool space #, extent #,
and drive offset # for each physical Parcel

$101

!

Based on virtual pool space #, extent #,
and drive offset #, check whether other failure-state
drive in same extent

S102

$ 5103
Targeted extent NN
comprises two failed,
unrebuilt drives?
Y
y
Data rebuild | |.57%4
process

¥

o

All stripe data elements of
Parcel rebuilt?

A 4

Configure Parcel status to
rebuilt (rebuild not required)

3105

End

US 9,411,527 B2

US 9,411,527 B2

Sheet 36 of 37

Aug. 9,2016

U.S. Patent

VAT 1 -1 A 4 T A

US 9,411,527 B2

Sheet 37 of 37

Aug. 9,2016

U.S. Patent

8l

Ll

9l

Sl

142

ac

US 9,411,527 B2

1

STORAGE SYSTEM AND DATA
MANAGEMENT METHOD

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application is a Continuation of U.S. application Ser.
No. 13/696,370 (National Stage of PCT/JP2012/004669),
filed Jul. 23, 2012, incorporated herein by reference in its
entirety.

TECHNICAL FIELD

The present invention relates to a storage system, which
has multiple storage apparatuses that configure a Redundant
Array of Independent Disks (RAID) group for the normal
data rebuild process, and technology for managing data in a
RAID group.

BACKGROUND ART

Heretofore, multiple storage apparatuses have been con-
figured into a RAID (Redundant Array of Independent Disks)
group in a storage system, and a logical volume created based
on the RAID group has been provided to a higher-level appa-
ratus (for example, a host computer).

As a RAID-related technology, Patent Literature 1 dis-
closes a so-called distributed RAID, that is, a technology for
managing a row of stripes comprising normal data and redun-
dant data for restoring the normal data by distributing these
stripes among multiple storage apparatuses, which provide a
storage area to a capacity pool.

Patent Literature 2 discloses a technology for alleviating
the load on a disk controller by implementing a data copy and
a correction copy inside a parity group coupled within the
same loop on the FM controller side.

Patent Literature 3 discloses a technology for a disk device
to receive information needed to update a parity from a con-
trol apparatus and to create a parity record based on this
information.

CITATION LIST
Patent Literature

[PTL 1]

US Patent Application Publication No. 2010/0107003
(Specification)

[PTL 2]

Japanese Patent Application Publication No. 2008-191966

[PTL 3]

Japanese Patent Application Publication No. H9-231015

SUMMARY OF INVENTION
Technical Problem

In a case where a failure has occurred in any storage appa-
ratus comprising a RAID group, which stores redundant data,
the redundant data and the like is used to restore (rebuild) data
stored in the storage apparatus in which the failure occurred.
The problem is that the capacity of storage apparatuses has
been increasing in recent years, making the time required for
a rebuild much longer.

Solution to Problem

A storage system comprises a second storage apparatus,
which is coupled to multiple first storage apparatuses and is of

10

20

25

30

40

45

50

55

65

2

a different type from the first storage apparatuses, and a first
control device, which is located either inside or outside of the
second storage apparatus. A row of stripes comprising mul-
tiple data elements obtained by segmenting a prescribed data
unit, and a redundancy code for rebuilding a data element, is
distributively stored in multiple first storage apparatuses,
which are more numerous than the total number of stripe data
elements, which are either the data elements or the redun-
dancy code, in the row of stripes. The row of stripes is con-
figured to enable the rebuilding of the stripe data elements
even when a failure has occurred in up to a prescribed allow-
able number, which is two or more, of the first storage appa-
ratuses storing the stripe data elements of the relevant row of
stripes. The first control device detects, from among multiple
rows of stripes, a first row of stripes in which either the
prescribed allowable number or a number approximating the
prescribed allowable number of first storage apparatuses
from among the multiple first storage apparatuses storing the
stripe data elements of the relevant row of stripes have failed,
and rebuilds the stripe data elements of the detected first row
of stripes in the first storage apparatus on a priority basis.

Furthermore, the “second storage apparatus, which is of a
different type from the first storage apparatus”, for example,
signifies that the configurations of the first storage apparatus
and the second storage apparatus differ.

Specifically, for example, the multiple first storage appa-
ratuses may each be storage media, and the second storage
apparatus may be an apparatus for controlling these multiple
storage media.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a hardware block diagram of a computer system
related to Example 1.

FIG. 2is ablock diagram of a lower-level storage apparatus
related to Example 1.

FIG. 3 is alogical block diagram of data related to Example
1.

FIG. 4 is a logical block diagram of data in a lower-level
storage apparatus related to Example 1.

FIG. 5 is a diagram showing tables in a shared memory
related to Example 1.

FIG. 6 is a diagram showing an example of a page mapping
table related to Example 1.

FIG. 7 is a diagram showing an example of a parcel map-
ping table related to Example 1.

FIG. 8 is a diagram showing an example of a drive status
table related to Example 1.

FIG. 9 is a diagram showing an example of a cache man-
agement table related to Example 1.

FIG. 10 is a block diagram of a local memory related to

Example 1.

FIG. 11 is a flowchart of a read/write process related to
Example 1.

FIG. 12 is a flowchart of a bulk writing process related to
Example 1.

FIG. 13 is a flowchart of a rebuild process related to
Example 1.

FIG. 14 is a flowchart of higher-level storage apparatus-

side processing in a high-speed data rebuild process related to
Example 1.

FIG. 15 is a schematic diagram illustrating a specific
example of the high-speed data rebuild process related to
Example 1.

FIG. 16 is a flowchart of a normal data rebuild process
related to Example 1.

US 9,411,527 B2

3

FIG. 17 is a diagram showing an example of a management
screen on a management server related to Example 1.

FIG. 18 is a logical block diagram of data related to
Example 2.

FIG. 19 is a diagram showing an example of a Galois
computation coefficient table related to Example 2.

FIG. 20 is a diagram illustrating a method for creating
rebuild data in the RAID.

FIG. 21 is a flowchart of a rebuild processing selection
process related to Example 3.

FIG. 22 is a flowchart of a data rebuild process related to
Example 4.

FIG. 23 is a block diagram of an external storage apparatus
related to Example 5.

FIG. 24 is a diagram illustrating a high-speed data rebuild
process related to Example 5.

FIG. 25 is a diagram showing an example of a parcel
mapping table related to Example 6.

FIG. 26 is a diagram illustrating processing for creating
partially rebuilt data in a rebuild process related to Example 6.

FIG. 27 is a diagram illustrating data rebuild processing in
a rebuild process related to Example 6.

FIG. 28 is a first diagram illustrating a failure handling
process during a rebuild related to Example 6.

FIG. 29 is a second diagram illustrating a failure handling
process during a rebuild related to Example 6.

FIG. 30 is a third diagram illustrating a failure handling
process during a rebuild related to Example 6.

FIG. 31 is a diagram showing an example of a rebuilt
bitmap table related to Example 7.

FIG. 32 is a diagram showing an example of a parcel
mapping table related to Example 7.

FIG. 33 is a diagram showing an example of a drive status
table related to Example 7.

FIG. 34 is a flowchart of a failure detection process related
to Example 7.

FIG. 35 is a diagram illustrating a write process related to
Example 7.

FIG. 36 is a diagram illustrating a priority rebuild related to
Example 8.

FIG. 37 is a diagram illustrating a status transition in a
higher-level storage apparatus related to Example 8.

FIG. 38 is a diagram showing an example of a stripe table
related to Example 8.

FIG. 39 is a flowchart of a priority rebuild process related
to Example 8.

FIG. 40 is a diagram illustrating a data placement method
related to Example 8.

FIG. 41 is a diagram illustrating warning parcels position
in a data placement method same as FIG. 40 related to
Example 8.

DESCRIPTION OF EMBODIMENTS

A number of examples will be explained by referring to the
drawings. The examples explained below do not limit the
invention pertaining to the claims, and not all of the elements
or combinations thereof explained in the examples are
required for the solution of the invention.

Furthermore, in the following explanation, various types of
information may be explained using the expression “aaa
table”, but the various information may also be expressed
using a data structure other than a table. To show that the
various information is not dependent on the data structure,
“aaa table” can be called “aaa information”.

Also, in the following explanation, there may be cases
where processing is explained having a “program” as the doer

10

15

20

25

30

35

40

45

50

55

60

65

4

of'the action, but since the stipulated processing is performed
in accordance with a program being executed by a processor
(for example, a CPU (Central Processing Unit)) while using a
storage resource (for example, a memory) and/or a commu-
nication interface device (for example, a port) as needed, the
processor may be used as the doer of the processing. A pro-
cess, which is explained using the program as the doer of the
action, may be regarded as a process performed by the pro-
cessor or a computer comprising this processor (for example,
a management computer, a host computer, or a storage appa-
ratus). Furthermore, a controller may be the processor itself,
or may comprise a hardware circuit, which carries out either
part or all of the processing performed by the controller. A
program may be installed in respective controllers from a
program source. The program source, for example, may be
either a program delivery server or a storage medium.

Example 1

An overview of a computer system comprising a storage
system related to Example 1 will be explained.

A storage system, for example, comprises a higher-level
storage apparatus (a second storage apparatus) 100 shown in
FIG. 1. The storage system may comprise an external storage
apparatus 40, which is an example of a first storage apparatus.
Multiple lower-level storage apparatuses 180, which are
examples of first storage apparatuses, are provided in a DKU
160 of the higher-level storage apparatus 100. A capacity pool
(hereinafter referred to as pool), which comprises the storage
areas of multiple lower-level storage apparatuses 180, is man-
aged in the higher-level storage apparatus 100. A RAID group
is configured in the higher-level storage apparatus 100 using
the pool area. That is, the RAID group comprises the multiple
lower-level storage apparatuses 180, which make up the pool
area.

The RAID group storage area comprises multiple rows of
sub-storage areas. Hach row of sub-storage areas spans the
multiple storage apparatuses (lower-level storage apparatuses
and/or the external storage apparatus) comprising the RAID
group, and comprises multiple sub-storage areas correspond-
ing to multiple storage apparatuses. A single sub-storage area
is called a “stripe” here, and a single row comprising multiple
stripes is called a “row of stripes”. The RAID group storage
area comprises multiple rows of stripes.

There are anumber of levels for RAID (hereinafter referred
to as a “RAID level”).

For example, in a RAIDS, write-target data specified from
a host computer corresponding to RAIDS is partitioned into
data of a prescribed size (hereinafter referred to as a “data
unit” for the sake of convenience), each data unit is parti-
tioned into multiple data elements, and the multiple data
elements are written to multiple stripes. In RAIDS, redundant
information (hereinafter “redundancy code™), which is called
“parity”, is created for each data unit in order to rebuild a data
element, which is no longer able to be read from a storage
apparatus as a result of a failure having occurred in this
storage apparatus, and this redundancy code is written to a
stripe in the same row of stripes. For example, in a case where
a RAID group comprises four storage apparatuses, three data
elements comprising the data unit are written to three stripes
corresponding to three of these storage apparatuses, and the
redundancy code is written to the stripe corresponding to the
remaining storage apparatus. Hereinbelow, in a case where no
distinction is made between a data element and a redundancy
code, both may be referred to as a stripe data element.

In addition, in a RAID®6, in a case where it becomes impos-
sible to read two data elements of the multiple data elements

US 9,411,527 B2

5

comprising a data unit because failures have occurred in two
storage apparatuses of the multiple storage apparatuses com-
prising the RAID group, two types of redundancy codes
(called a P-parity and a Q-parity) are created for each data unit
so as to enable these two data elements to be rebuilt, and both
redundancy codes are written to stripes of the same row of
stripes.

RAID levels other than those explained hereinabove also
exist (for example, RAID 1 through 4). In addition, as tech-
nologies for making data redundant, there is also triple mir-
roring (Triplication) and a triple parity technology, which
uses three parities. There is also a variety of techniques for
creating a redundancy code, such as Reed-Solomon codes
using Galois field arithmetic, and the EVEN-ODD technique.
In the example of the present invention, RAIDS and RAID6
will mainly be explained, but the present invention is not
limited thereto, and can be applied by substituting for the
above-described methods.

In a case where any lower-level storage apparatus 180 of
the lower-level storage apparatuses 180 fails, for example, the
higher-level storage apparatus 100 rebuilds the data element
stored in the failed lower-level storage apparatus 180 in accor-
dance with either a first process or a second process shown
hereinbelow.

As the first process, a microprocessor (MP) 121 acquires
data (for example, another data element and parity) required
for rebuilding the data element stored in the failed lower-level
storage apparatus 180 from the multiple lower-level storage
apparatuses 180 storing this data, stores this acquired data in
a transfer buffer 142 of an interface device (for example, a
BEPK 140), uses a parity operator 141 of the BEPK 140 to
rebuild the data element based on the data in the transfer
buffer 142, and stores the relevant data element in a pre-
scribed lower-level storage apparatus 180. According to the
first process, the data for rebuilding the data element need not
be stored in a CM 131, thereby making it possible to reduce
the load on the CM 131 and an internal network 150 of the
higher-level storage apparatus 100.

As the second process, the MP 121 collects data (for
example, another data element and/or parity), which is
required for rebuilding a data element stored in a failed stor-
age apparatus 180 of any to the lower-level storage appara-
tuses 180 of a path group, and which is stored in a lower-level
storage apparatus 180 belonging to the relevant path group,
and based on the collected data, creates partially rebuilt data
as an example of rebuild data by performing an operation for
rebuilding the data element, acquires the relevant partially
rebuilt data, and stores this data in the transfer buffer 142. The
MP 121 also sends the partially rebuilt data stored in the
transfer buffer 142 to any lower-level storage apparatus 180
of another path group, has the lost data element rebuilt by this
lower-level storage apparatus 180 based on the partially
rebuilt data, and stores the rebuilt data element in any lower-
level storage apparatus 180. According to the second process,
the data for rebuilding the data element need not be stored in
the CM 131, thereby making it possible to reduce the load on
the CM 131 and the internal network of the higher-level
storage apparatus 100. Also, since the partially rebuilt data is
created in the lower-level storage apparatus 180 by using
another data element and/or parity, and sent to the BEPK 140,
it is possible to reduce the amount of data sent from the
lower-level storage apparatus 180 to the BEPK 140. Also, the
higher-level storage apparatus 100 rebuilds the data without
using the parity operator 141, thereby making it possible to
alleviate the load on the parity operator 141.

A computer system comprising a storage system related to
Example 1 will be explained first.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 is a hardware block diagram of a computer system
related to Example 1.

The computer system comprises one or more host comput-
ers (hereinafter called host) 10, a management server 20, and
a higher-level storage apparatus 100. The host computer 10,
the management server 20, and the higher-level storage appa-
ratus 100 are coupled via a network 30. The network 30 may
be a local area network or a wide area network. Also, one or
more external storage apparatuses 40 may be coupled to the
higher-level storage apparatus 100. The external storage
apparatus 40 comprises one or more storage devices. The
storage device is a nonvolatile storage medium, for example,
a magnetic disk, a flash memory, or another semiconductor
memory.

The host 10, for example, is a computer for executing an
application, and reads data used in the application from the
higher-level storage apparatus 100 and writes data created by
the application to the higher-level storage apparatus 100.

The management server 20 is used by an administrator to
execute a management process for managing the computer
system. The management server 20, in accordance with an
input device operation by the administrator, receives a setting
for atype of data rebuild process to be executed when rebuild-
ing data, and configures the higher-level storage apparatus
100 to execute the received data rebuild process.

The higher-level storage apparatus 100 comprises one or
more front-end packages (FEPK) 110, a maintenance inter-
face (maintenance I/F) 115, one or more microprocessor
packages (MPPK) 120, one or more cache memory packages
(CMPK) 130, one or more backend packages (BEPK) 140, an
internal network 150, and one or more disk units (DKU) 160.
The FEPK 110, the maintenance I/F 115, the MPPK 120, the
CMPK 130, and the BEPK 140 are coupled via the internal
network 150. The BEPK 140 is coupled to the DKU 160 via
multiple system paths.

The FEPK 110 is one example of an interface device, and
comprises one or more ports 111. The port 111 couples the
higher-level storage apparatus 100 to various apparatuses via
the network 30 and so forth. The maintenance I/F 115 is for
coupling the higher-level storage apparatus 100 to the man-
agement server 20.

The MPPK 120 comprises a microprocessor (MP) 121 as
one example of a first control device, and a local memory
(LM) 122. The LM 122 stores various programs and various
types of information. The MP 121 executes each processing
by implementing various programs stored in the LM 122. The
MP 121 sends various commands to a lower-level storage
apparatus 180 of the DKU 160 via the BEPK 140. The MP
121 also sends various commands to the external storage
apparatus 40 via the FEPK 110.

The commands, which the MP 121 sends to the lower-level
storage apparatus 180 via the BEPK 140 and sends to the
external storage apparatus 40 via the FEPK 110, will be
explained here. In a case where the lower-level storage appa-
ratus 180 supports a SCSI command, the following com-
mands can be realized by using the vendor-unique field of the
SCSI command.
<Primitive Command>

A primitive command is for executing a basic function on
a storage apparatus (for example, a lower-level storage appa-
ratus 180).

(1) Data Copy Command

A data copy command is a command to a storage apparatus
(for example, a lower-level storage apparatus 180) for copy-
ing data from an area of a transfer-source device (for example,
a lower-level storage apparatus 180) to an area of a transfer-
destination device (for example, another lower-level storage

US 9,411,527 B2

7

apparatus 180). This command is sent to the transfer-destina-
tion device. Upon receiving this command, the transfer-des-
tination device copies the data to the transfer-source device.
Specifically, for example, there is a method by which the
transfer-source device recognizes the transfer-destination
device as the SCSI initiator device via the switch 161, issues
an SCSI write command and copies the data. Another data
transfer command may also be used. The same data transfer
may also be implemented in accordance with the switch 161
recognizing the lower-level storage apparatus as the initiator
device, and the upper-level storage apparatus issuing the data
copy command. Thus, a data copy can be executed without
going through the BE controller 143 like this.

The arguments of the data copy command are a transfer-
source device #, a transfer-source LBA # (or transfer-source
buffer #), a transfer-destination LBA # (or transfer-destina-
tion buffer #), a TL #, and a buffer mode. Each argument is as
follows.

The transfer-source device # is anumber for identifying the
transfer-source storage apparatus, and, for example, is a
SCSI ID or LUN (Logical Unit Number).

The transfer-source LBA # is the number of a transfer-
source sub-block. The transfer-source buffer # is the
number of a buffer in the transfer-source lower-level
storage apparatus 180. In a case where the buffer mode
for the transfer source shown below is OFF, the transfer-
source LBA # is configured as the argument, and in a
case where the buffer mode for the transfer source in
ON, the transfer-source buffer # is configured as the
argument.

The transfer-destination LBA # is the number of a transfer-
destination sub-block. The transfer-destination buffer #
is the number of a buffer in the transfer-destination
lower-level storage apparatus. In a case where the buffer
mode for the transfer destination is OFF, the transfer-
destination LBA # is configured as the argument, and in
a case where the buffer mode for the transfer destination
in ON, the transfer-destination buffer # is configured as
the argument.

The TL # is the number of sub-blocks to be transferred.

The buffer mode comprises ON/OFF for showing whether
or not a buffer area of the storage apparatus (for
example, the lower-level storage apparatus 180) is speci-
fied as the transfer source, and ON/OFF for showing
whether or not a buffer area of the storage apparatus is
specified as the transfer destination.

The contents of multiple transfers (for example, multiple
transfer-source storage apparatuses and transfer-source LBA
#s) may be included in a single data copy command. The
number of commands issued can be reduced in accordance
with doing this.

(2) Parity Operation Command

A parity operation command is a command to a storage
apparatus (for example, a lower-level storage apparatus 180)
for executing a parity operation (for example, an exclusive
OR (XOR) in the case of RAIDS) on operation-source area
data and operation-destination area data, and for executing a
process for writing the result of the operation to the operation-
destination area. This command is sent to the storage appa-
ratus, which performs the operation.

The arguments of the parity operation command are an
operation-source area LBA # (or operation-source buffer #),
an operation-destination area LBA # (or operation-destina-
tion buffer #), a TL #, and a buffer mode. Each argument is as
follows.

The operation-source areca LBA # is the number of an

operation-source sub-block in which data used in the

10

15

20

25

35

40

45

50

55

60

65

8

operation of the storage apparatus, which received the
command, is stored. The operation-source buffer # is the
number of a buffer in the operation-source in which data
used in the operation of the storage apparatus, which
received the command, is stored. In a case where the
buffer mode for the operation source is OFF, the opera-
tion-source area LBA # is configured as the argument,
and in a case where the buffer mode for the operation
source in ON, the operation-source buffer # is config-
ured as the argument.

The operation-destination area LBA # is the number of an
operation-destination sub-block for storing the result of
the operation of the storage apparatus, which received
the command. The operation-destination buffer # is the
number of the buffer for storing the result of the opera-
tion of the storage apparatus, which received the com-
mand. In a case where the buffer mode for the operation
destination is OFF, the operation-destination area LBA #
is configured as the argument, and in a case where the
buffer mode for the operation destination in ON, the
operation-destination buffer # is configured as the argu-
ment.

The TL # is the number of sub-blocks in which the data
used in the operation is included.

The butfer mode comprises ON/OFF for showing whether
or not a buffer area of the storage apparatus is specified
as the operation source, and ON/OFF for showing
whether or not a buffer area of the storage apparatus is
specified as the operation destination.

The contents of multiple operations (for example, multiple
operation-source area LBAs) may be included in a single
parity operation command. The number of commands issued
can be reduced in accordance with doing this.

(3) Butfer Reserve/Release Command

A buffer reserve/release command is a command to a stor-
age apparatus (for example, a lower-level storage apparatus
180) for reserving an area of the memory of the storage
apparatus as a buffer, and for releasing a reserved buffer.

The arguments of the buffer reserve/release command are
reserve and release. Each argument is a follows.

Reserve is configured when reserving a buftfer. There is no

need for configuring a parameter. The buffer number of
a reserved buffer is included in a response from the
storage apparatus with respect to the buffer reserve/
release command, which was configured for reserving.

Release is configured when releasing a buffer. In the case of
this argument, the number of the buffer to be released,
and the release size (for example, the number of sub-
blocks) must be configured.

(4) Buffer Read Command

A buffer read command is for reading data in a buffer of a
storage apparatus (for example, a lower-level storage appa-
ratus 180) to the transfer buffer 142 of the higher-level storage
apparatus 100. That is, the buffer read command is a com-
mand to a storage apparatus for transferring and storing data,
which is in the storage apparatus buffer, in the transfer buffer
142 of the higher-level storage apparatus 100.

The argument of the buffer read command is a buffer num-
ber. The buffer number is the number of the buffer of the
storage apparatus targeted for the read.

(5) Buffer Write Command

A buffer write command is for writing data, which is in the
transfer buffer 142 of the higher-level storage apparatus 100,
to a buffer of a storage apparatus (for example, a lower-level
storage apparatus 180). That is, the buffer write command is

US 9,411,527 B2

9

for storing data, which has been stored in the transfer buffer
142 of the higher-level storage apparatus, in a storage appa-
ratus buffer.

The argument of the buffer write command is a buffer
number.

The buffer number is the number of the buffer of the stor-
age apparatus targeted for the write.
<High-Level Command>

A high-level command allows a storage apparatus (for
example, a lower-level storage apparatus 180) to execute a
process, which combines basic command functions. The
high-level command makes it possible to lower the number of
commands sent when having a storage apparatus execute a
series of processes, and to reduce the overhead of MP 121
processing.

(6) Parity-Rebuild Read Command

A parity-rebuild read command is for causing a storage
apparatus (for example, a lower-level storage apparatus 180)
to acquire a data element and/or parity needed for rebuilding
a prescribed data element from multiple storage apparatuses
in the same path group, to execute an operation (for example,
an exclusive OR) for rebuilding the data element and/or par-
ity, and to transfer the result of this operation to the transfer
buffer 142 of the higher-level storage apparatus 100, which is
the initiator. It is preferable that this command is transferred
to a storage apparatus, which is configured in any of transfer-
source devices #[1] through [N], which will be explained
further below. When the command is transferred to a storage
apparatus configured in any of transfer-source devices #[1]
through [N], it is possible to lower the number of times that
data is transferred between storage apparatuses, and to
enhance processing efficiency.

The arguments of the parity-rebuild read command are a
transfer-source device #[1], a transfer-source LBA #[1], . . .,
a transfer-source device #[N], a transfer-source LBA #[N],
and a TL #. Here, N is an arbitrary integer. Each argument is
a follows.

The transfer-source devices #[1] through [N] are numbers
for identifying respective transfer-source storage appa-
ratuses, and, for example, are either SCSI IDs or LUNs
(Logical Unit Numbers). Storage apparatuses, which
belong to the same path group, can be configured in a
single command as transfer-source devices #[1] through
[N]

The transfer-source LBAs #[1] through [N] are numbers of
sub-blocks in the respective transfer sources.

The TL # is the number of sub-blocks to be transferred.

(7) Parity-Rebuild Write Command

A parity-rebuild write command is for causing a storage
apparatus (for example, a lower-level storage apparatus 180)
to acquire a data element and/or parity needed for rebuilding
a prescribed data element from multiple storage apparatuses
in the same path group, to create a first operation result by
executing an operation (for example, an exclusive OR) for
rebuilding the data element and/or parity, and in addition, to
acquire one or more operation results stored in the transfer
buffer 142 of the higher-level storage apparatus 100, which is
the initiator, to create a second operation result by executing
an operation (for example, an exclusive OR) for rebuilding
the prescribed data element based on the relevant operation
result, and to rebuild the prescribed data element by executing
a prescribed operation (for example, an exclusive OR) on the
first operation result and the second operation result. The
sequence of the operations for rebuilding the prescribed data
element is not limited to that given above, and the operations
may be executed in an arbitrary sequence, the point being that
operations for rebuilding the data element be executed. This

10

15

20

25

30

35

40

45

50

55

60

65

10

command may be transferred to a storage apparatus, which is
configured in any of transfer-source devices #[1] through [N],
which will be explained further below. When the command is
transferred to a storage apparatus configured in any of trans-
fer-source devices #[1] through [N], it is possible to lower the
number of times that data is transferred between storage
apparatuses, enabling the enhancement of processing effi-
ciency.

The arguments of the parity-rebuild write command are a
transfer-destination device #, a transfer-destination LBA #, a
transfer-source device #[1], a transfer-source LBA #[1], .. .,
a transfer-source device #[N], a transfer-source LBA #[N], a
TL #, and a number of pieces of write data. Each argument is
a follows.

The transfer-destination device # is a number for identify-
ing a transfer-destination storage apparatus for storing
the rebuilt data element, and, for example, is either an
SCSI ID or a LUN (Logical Unit Number). A storage
apparatus, which belongs to the same path group as the
storage apparatuses configured as transfer-source
devices #[1] through [N], is able to be specified as a
transfer-destination storage apparatus.

The transfer-destination LBA # is the number of sub-
blocks of the transfer destination.

The transfer-source devices #[1] through [N] are numbers
for identifying respective transfer-source storage appa-
ratuses, and, for example, are either SCSI IDs or LUNs
(Logical Unit Numbers). Storage apparatuses, which
belong to the same path group, are able to be configured
in a single command as transfer-source devices #[1]
through [N].

The transfer-source LBAs #[1] through [N] are numbers of
sub-blocks in the respective transfer sources.

The TL # is the number of sub-blocks to be transferred
from the storage apparatus corresponding to the trans-
fer-source device number.

The number of pieces of write data is the number of opera-
tion results fetched from the transfer buffer 142 and
transferred to the command-destination storage appara-
tus. More specifically, this represents the number of
operation results based on a path group stored in the
higher-level storage apparatus 100.

The CMPK 130 comprises a cache memory (CM) 131. The
CM 131 temporarily stores data (write data) written to a
lower-level storage apparatus 180 from the host 10, and data
(read data) read from the lower-level storage apparatus 180.

The BEPK 140 comprises a parity operator 141 as an
example of a second control device, a transter buffer (DXBF)
142, and a backend controller (BE controller) 143.

The parity operator 141, for example, is a small processor,
and when a failure occurs in the lower-level storage apparatus
180, creates the redundancy code (hereinafter, parity) for
rebuilding a data element no longer able to be read as a result
of'this failure. The parity operator 141, for example, creates a
P-parity for a data unit of a RAID group configured as RAIDS
by computing the exclusive OR of multiple data elements
comprising the data unit. The parity operator 141 also creates
a Q-parity for a data unit of a RAID group configured as
RAID6 by computing the exclusive OR of respective data
after multiplying a prescribed coefficient by the multiple data
elements comprising the data unit. The parity operator 141
also performs a rebuild process for rebuilding any data ele-
ment in the data unit based on one or more stripe data ele-
ments (a data element and/or parity) of the data unit. In
addition, the parity operator 141, based on one or more stripe
data elements of the data unit, creates a partial operation

US 9,411,527 B2

11

result by performing a partial operation equivalent to a part of
a rebuild processing operation for rebuilding any data ele-
ment.

The transfer buffer 142 temporarily stores data, which has
been sent from the lower-level storage apparatus 180, and
data to be sent to the lower-level storage apparatus 180. The
BE controller 143 communicates various commands, write
data, read data and so forth between the lower-level storage
apparatuses 180 of the DKU 160.

The DKU 160 comprises multiple lower-level storage
apparatuses 180 (hereinafter, may be called drives). The
lower-level storage apparatus 180 comprises one or more
storage devices. The storage device is a nonvolatile storage
medium, and, for example, is a magnetic disk, a flash
memory, or another semiconductor memory. The DKU 160
comprises multiple groups (path groups) 170 of multiple
lower-level storage apparatuses 180 coupled to the BE con-
troller 143 via the same path. Lower-level storage apparatuses
180, which belong to the same path group 170, are coupled
together via a switch 161. The lower-level storage appara-
tuses 180 belonging to the same path group 170 are able to
communicate directly, and, for example, one lower-level stor-
age apparatus 180 is able to send various data to another
lower-level storage apparatus 180 belonging to the same path
group 170. Furthermore, lower-level storage apparatuses 180,
which belong to different path groups 170, are not able to
communicate directly. However, depending on the coupling
method of the switch 161, it is also possible to make all the
lower-level storage apparatuses 180 in the higher-level stor-
age apparatus 100 accessible to one another. In accordance
with this, all of the lower-level storage apparatuses 180 may
be one huge path group 170, or an aggregate of lower-level
storage apparatuses 180 whose relationship to one another is
closely connected, that is, lower-level storage apparatuses
180, which either have large numbers of communication
channels or have communication channels with high through-
put, may be a path group 170.

FIG. 2 is a block diagram of a lower-level storage apparatus
related to Example 1.

The lower-level storage apparatus 180 comprises a port
181, a processor 182 as an example of a third control device,
a memory 183, a backend controller 184, and one or more
flash memory chips 185.

The port 181 is an interface for communicating with either
the BE controller 143 or another lower-level storage appara-
tus 180. The memory 183 stores a program and various types
of information. The processor 182 executes a program stored
in the memory 183, and performs various processing using
the information stored in the memory 183. In the example, the
processor 182 executes a process corresponding to a com-
mand, which will be explained further below, sent via the
BEPK 140. The processor 182 also executes the same arith-
metic processing as the parity operator 141. The backend
controller 184 mediates the exchange of data with a flash
memory chip 185. The flash memory chip 185, for example,
may be a NAND-type flash memory chip, may be another
type (for example, a NOR type) flash memory, or may be a
PRAM or aReRAM. Alternatively, it may be a magnetic disk.
A parity operator may also be provided in the lower-level
storage apparatus 180.

FIG. 3 is alogical block diagram of data related to Example
1.

A virtual volume 50 recognizable by the host 10 comprises
multiple virtual pages (virtual logical pages) 51. A physical
page 55 of a virtual pool space 52 is allocated to a virtual page
51. One or more extents 53 are managed in the virtual pool
space 52. The extent 53 comprises multiple parcels (Parcel)

10

15

20

25

30

35

40

45

50

55

60

65

12

54. A parcel 54 comprises consecutive areas in a single stor-
age apparatus (for example, a lower-level storage apparatus
180). The parcel 54 comprises four stripes 57 in the example
of FIG. 3.

As shown in FIG. 3, in the case of a RAIDS (3D+1P)
configuration, that is, a configuration in which three data
elements (D), which comprise a data unit, and one parity (P)
corresponding to these data elements are stored in respec-
tively different storage apparatuses, for example, the extent
53 comprises the parcels 54 of four different lower-level
storage apparatuses 180. Since a distributed RAID configu-
ration has been adopted in this example, the extent 53 com-
prises the parcels 54 of four different lower-level storage
apparatuses 180 from among multiple (a number larger than
the four required at a minimum for 3D+1P (for example,
eight)) lower-level storage apparatuses 180, which comprise
the storage area of the virtual pool space 52, and the combi-
nation of the lower-level storage apparatuses 180, which
comprise the parcels 54 making up each extent 53, is not
fixed.

The extent 53 comprises multiple (for example, two)
physical pages 55. The physical page 55 is able to store the
data elements of multiple (for example, two) consecutive data
units and parity (data in the same row of stripes 56). In this
drawing, reference signs, which have numerals following a
“_”in common, such as D1_1, D2_1, D3_1, P_1, indicate
data elements, which are in the same data unit, and parity. The
data element and the parity are each the size of a stripe 57.

FIG. 4 is a logical block diagram of data in a lower-level
storage apparatus related to Example 1.

The lower-level storage apparatus 180 is able to transfer
datato a higher-level apparatus using a sub-block 61, whichis
the smallest unit (for example, 512B) of a SCSI command
process, as a unit. A slot 62, which is the management unit (for
example, 256 KB)used for caching data to the cache memory
131, comprises an aggregate of multiple consecutive sub-
blocks 61. The stripe 57 is stored in multiple slots 62. The size
of'the stripe 57, for example, is 512 KB when the stripe 57 is
configured using two slots 62.

FIG. 5 is a diagram showing the tables in a shared memory
related to Example 1.

The shared memory 200, for example, is configured using
at least any one storage area of the lower-level storage appa-
ratus 180, the CM 131, and the LM 122. The logical shared
memory 200 may also comprise a storage area comprising
multiple of the lower-level storage apparatus 180, the CM
131, and the LM 122, and cache management may be per-
formed for each type of information.

The shared memory 200 stores a page mapping table 210,
a parcel mapping table 220, a drive status table 230, and a
cache management table 240. Each table will be explained in
detail below.

FIG. 6 is a diagram showing an example of the page map-
ping table related to Example 1.

The page mapping table 210 is information showing the
corresponding relationship between a logical page 51 of a
virtual volume 50 and a physical page 55 of the virtual pool
space 52. The page mapping table 210 manages an entry
comprising the fields of a virtual volume number 211, a
logical page number 212, a pool number 213, a virtual pool
space number 214, and a physical page number 215.

A number of a virtual volume 50 (a virtual volume number)
is stored in the virtual volume number 211. A number (a
logical page number) of a logical page in the virtual volume
50 indicated by the virtual volume number in the virtual
volume number 211 of the entry is stored in the logical page
number 212. A number of a pool, which comprises a physical

US 9,411,527 B2

13

page allocated to a logical page corresponding to the logical
page number in the logical page number 212 of the entry, is
stored in the pool number 213. A number (a virtual pool space
number) of a virtual pool space, which comprises a physical
page allocated to the logical page corresponding to the logical
page number in the logical page number 212, in the pool of the
pool number in the pool number 213 of the entry, is stored in
the virtual pool space number 214. A number (a physical page
number) of the physical page allocated to the logical page
corresponding to the logical page number in the logical page
number 212 of the entry, is stored in the physical page number
215. The physical page number, for example, is the LBA
(address of a sub-block unit).

According to the entry at the very top of FIG. 6, it is clear
that a physical page with the physical page number “0” in a
virtual pool space having the virtual pool space number “2” of
apool with the pool number “0” is allocated to a logical page
having the logical page number “1” in a virtual volume having
the virtual volume number “1”.

FIG. 7 is a diagram showing an example of a parcel map-
ping table related to Example 1.

The parcel mapping table 220 is for managing a physical
parcel 54 allocated to an extent 53. The parcel mapping table
220 manages an entry comprising the fields of a virtual pool
space number 221, an extent number (#) 222, a drive offset
number (#) 223, a physical drive number (#) 224, a physical
parcel number (#) 225, and a parcel status 226.

A number (a virtual pool space number) of a virtual pool
space is stored in the virtual pool space number 221. A num-
ber (an extent number) of an extent in the virtual pool space
corresponding to the virtual pool space number in the virtual
pool space number 221 of the entry is stored in the extent
#222. A number (a drive offset number) of a drive offset in the
extent corresponding to the extent number in the extent #222
of'the entry is stored in the drive offset #223. The drive offset
number here is a number indicating any of the drives in the
RAID group configuration (for example, 3D+1P), and in this
example, four drive offset numbers, i.e., 0 through 3, are
correspondingly managed as the drive offset numbers with
respect to one extent in one virtual pool space. A number (a
physical drive number) of a physical drive (for example, a
lower-level storage apparatus) for storing a physical parcel
allocated to the drive having the drive offset number in the
drive offset #223 of the entry is stored in the physical drive
#224. A number of a physical parcel, which is allocated to the
drive of the drive offset number, is stored in the physical
parcel #225. A status of a physical parcel corresponding to the
physical parcel number in the physical parcel #225 of the
entry is stored in the parcel status 226. In this example, in a
case where a rebuild is required for a data element stored in a
parcel, “rebuild required”, which indicates this fact, is con-
figured in the parcel status 226, and in other cases, a blank
space is configured. For example, in a case where the lower-
level storage apparatus 180 is in a failure state, the MP 121
configures “rebuild required” in the parcel status 226 of the
entry corresponding to the parcel of this lower-level storage
apparatus 180.

FIG. 8 is a diagram showing an example of a drive status
table related to Example 1.

The drive status table 230 manages the status of a physical
drive (for example, a lower-level storage apparatus 180) com-
prising a virtual pool space 52. The drive status table 230
manages an entry comprising the fields of a virtual pool space
number 231, a physical drive number 232, and a status 233. A
number (a virtual pool space number) of a virtual pool space
is stored in the virtual pool space number 231. A number (a
physical drive number) of a physical drive, which comprises

20

40

45

14

the virtual pool space corresponding to the virtual pool space
number in the virtual pool space number 231 of the entry, is
stored in the physical drive number 232. A status of the
physical drive corresponding to the physical drive number in
the physical drive number 232 of the entry is stored in the
status 233. As the physical drive status, either “normal”,
which shows that the physical drive is normal, or “abnormal
(R/W not possible)”, which shows that it is not possible to
read/write from/to the physical drive, is configured.

FIG. 9 is a diagram showing an example of a cache man-
agement table related to Example 1.

The cache management table 240 manages an entry com-
prising the fields of a virtual volume number 241, a volume
slot number 242, a cache slot number 243, a destage inhibit
flag 244, and a dirty bitmap 245.

A number of a virtual volume (a virtual volume number) is
stored in the virtual volume number 241. A number (a volume
slot number) of a volume slot of a virtual volume correspond-
ing to the virtual volume number in the virtual volume num-
ber 241 of the entry is stored in the volume slot number 242.
A number (a cache slot number) of a cache slot in the CM 131
in which is stored the volume slot corresponding to the vol-
ume slot number in the volume slot number 242 is stored in
the cache slot number 243. In this example, the number (the
number to which (data) is appended in the drawing) of the
cache slot for storing the data element stored in the volume
slot, and the number (the number to which (parity) is
appended in the drawing) of the cache slot for storing the
parity for rebuilding the data element stored in the volume
slot are stored in the cache slot number 243. A destage inhibit
flag, which indicates whether data of a cache slot correspond-
ing to the cache slot number in the cache slot number 243 of
the entry should be destaged, or should be removed from the
cache slot of the CM 131 by being written to the storage
apparatus, is stored in the destage inhibit flag 244. An aggre-
gate of bits (a bitmap) showing whether or not the data of each
sub-block in the cache slot corresponding to the cache slot
number in the cache slot number 243 of the entry is dirty data
is stored in the dirty bitmap 245.

FIG. 10 is a block diagram of a local memory related to
Example 1.

The local memory 122 stores a read/write program 1220, a
bulk writing program 1221, a normal write program 1222, a
rebuild program 1223, a high-speed data rebuild program
1224, and a normal data rebuild program 1225. The read/
write program 1220 is for executing a read/write process
(refer to FIG. 11). The bulk writing program 1221 is for
executing a bulk writing process (refer to FIG. 12). The nor-
mal write program 1222 is for executing a normal write
process. The rebuild program 1223 is for executing a rebuild
process (refer to FIG. 13). The high-speed data rebuild pro-
gram 1224 is for executing a high-speed data rebuild process
(refer to FIG. 14). The normal data rebuild program 1225 is
for executing a normal data rebuild process (FIG. 16).

The processing operations of the computer system related
to Example 1 will be explained next.

FIG. 11 is a flowchart of a read/write process related to
Example 1.

The read/write process is executed in a case where the MP
121 hasreceived an /O command (a read command or a write
command) from the host 10 by way of the port 111 of the
FEPK 110.

The MP 121 determines whether or not the received com-
mand is a write command (Step S10). In a case where the
result thereof is that it is a write command (Step S10:Y), the
MP 121 receives write-data corresponding to the write com-
mand from the host 10 and writes it to the cache memory 131

US 9,411,527 B2

15
(Step S11), and sends a notification of completion to the host
10 via the port 111 of the FEPK 110 (Step S12).

Alternatively, in a case where the received command is not
a write command, that is, it is a read command (Step S10: N),
the MP 121 determines whether or not a rebuild-required
parcel exists within the access range of the storage apparatus
(either a lower-level storage apparatus 180 or an external
storage apparatus 40) targeted by the read command (Step
S13). The read command comprises a virtual volume number
and a logical page number, which are targeted for access. At
this point, it is possible to determine whether or not a rebuild-
required parcel exists within the access range targeted by the
read command by using the page mapping table 210 to iden-
tify the virtual pool space and physical page targeted for
access by the read command, and using the parcel mapping
table 220 to acquire the value of the parcel status 226, which
corresponds to the parcel corresponding to the physical page.

The parcel corresponding to the physical page can be iden-
tified by computing the drive offset based on a quotient
obtained by dividing the virtual pool space address (the physi-
cal page number (for example, the LBA (the address of the
sub-block unit))) by the size of the stripe data.

More specifically, first the extent # is computed using the
following formula.

The extent # is determined by extent #=tloor (floor (LBAx
number of Ds/(number of Ds+number of Ps))/physical size of
extent). Here, the number of Ds is the number of data ele-
ments in the RAID row of stripes, and the number of Ps is the
number of parity in the row of stripes. The physical size of the
extent is the number of sub-blocks.

Next, the drive offset # is computed using the following
formula.

Drive offset #=(floor((floor(LBA/(stripe data size/sub-
block size)))/number of Ds)+(floor(LBA/stripe

data size/sub-block size))MOD number of
Ds)MOD(number of Ds+number of Ps)

By doing so, it is possible to identify the virtual pool space
number, the extent #, and the drive offset #, which are targeted
for access, and the physical drive # and the physical parcel #
can be identified by referencing the parcel mapping table 220.

In a case where the result of the determination of Step S13
is that a rebuild-required parcel does not exist (Step S13: N),
the MP 121 executes a normal read process (Step S14), and
advances the processing to Step S16. In the normal read
process here, the MP 121 sends a read request to the storage
apparatus comprising the access-range parcel, and acquires
the read-target data.

Alternatively, in a case where the result of the determina-
tion of Step S13 is that a rebuild-required parcel exists (Step
S13:Y), the MP 121 executes a correction read process (Step
S15) and advances the processing to Step S16. In the correc-
tion read process here, the MP 121 rebuilds a data element in
need of rebuilding by using a process identical to a high-speed
data rebuild process (refer to FIG. 14), which will be
explained further below, for the data element of the rebuild-
required parcel, and acquires the relevant rebuilt data element
from the storage apparatus.

In Step S16, the MP 121 transfers the acquired data to the
host 10 via the FEPK 110.

FIG. 12 is a flowchart of a bulk writing process related to
Example 1.

The bulk writing process, for example, is executed regu-
larly. The MP 121 determines whether or not a slot compris-
ing data, which has not been reflected in the storage appara-
tus, exists in the cache memory 131 (Step S21). It is possible
to discern whether or not a slot comprising unreflected data
exists by referencing the cache management table 240. In a

10

15

20

25

30

35

40

45

50

55

60

65

16
case where the result thereof is that a slot comprising unre-
flected data does not exist (Step S21: N), the MP 121 ends the
bulk writing process.

Alternatively, in a case where a slot comprising unreflected
data exists (Step S21:Y), the MP 121 references the destage
inhibit flag 244 of the entry corresponding to the relevant slot
of the cache management table 240, and determines whether
or not the relevant slot is a destage inhibit-in-progress slot
(Step S22).

A case in which the result thereof is that the slot is a destage
inhibit-in-progress slot (Step S22:Y) indicates that the data
included in the slot is being used in a rebuild, and as such, the
MP 121 moves to Step S21 without reflecting the relevant slot
data in the storage apparatus, and targets another slot for the
processing. Alternatively, in a case where the slot is not in the
process of inhibiting a destage (Step S22: N), the MP 121
determines whether or not a rebuild-required parcel exists in
the storage apparatus range (access range) for writing the
relevant slot data (Step S23).

In a case where the result of the determination of Step S23
is that a rebuild-required parcel exists (Step S23:Y), the MP
121 executes a correction write process (Step S24) and moves
the processing to Step S21. In the correction write process
here, the MP 121 uses the slot data to create a new parity for
the storage apparatus, and stores the relevant parity in the
storage apparatus. Specifically, in a case where the correction
write target is D (data), all of the other old data of the row of
stripes is read from the lower-level storage apparatus 180,
new parity is created using an exclusive OR, and the new data
and the new parity are written to the lower-level storage
apparatus 180. In a case where the correction write target is P
(parity), only the new data is written to the lower-level storage
apparatus 180 since the parity does not need to be updated. In
addition, the MP 121 rebuilds the data element that needs
rebuilding by using the same process as a high-speed data
rebuild process (refer to FIG. 14), which will be explained
further below, for the data element of the rebuild-required
parcel, and stores this rebuilt data element in the storage
apparatus.

Alternatively, in a case where the result of the determina-
tion of Step S23 is that a rebuild-required parcel does not exist
(Step S23: N), the MP 121 executes a normal write process
(Step S25), and moves the processing to Step S21. In the
normal write process here, the MP 121 sends a prescribed
command (a XDWRITE command) for storing a data element
to the storage apparatus (for example, the lower-level storage
apparatus 180), which is storing the data element of the row of
stripes corresponding to the slot data. At this time, the MP 121
sends the data element of the CM 131 to the lower-level
storage apparatus 180, which is storing the data element of the
row of stripes corresponding to the slot data, by way of the
transfer buffer 142. The MP 121 also sends a prescribed
command (a XPWRITE command) for creating and storing a
new parity to the lower-level storage apparatus 180, which is
storing the parity of the row of stripes corresponding to the
slot data. At this time, the MP 121 sends the data element of
the CM 131 to the lower-level storage apparatus 180, which is
storing the parity of the row of stripes corresponding to the
slot data, by way of the transfer buffer 142. The lower-level
storage apparatus 180, which receives the XDWRITE com-
mand, stores the received data element in a specified area.
Meanwhile, the lower-level storage apparatus 180, which
receives the XPWRITE command, uses the received data
element to create a new parity and stores the created new
parity in a specified area.

FIG. 13 is a flowchart of a rebuild process related to
Example 1.

US 9,411,527 B2

17

The rebuild process is executed at an arbitrary timing. The
MP 121 references the parcel mapping table 220, and deter-
mines whether or not there is a parcel for which a rebuild is
incomplete, that is, whether or not a parcel having a parcel
status of “rebuild required” exists (Step S41). In a case where
the result thereof is that a rebuild-incomplete parcel does not
exist (Step S41: N), the MP 121 ends the rebuild process.
Alternatively, in a case where a rebuild-incomplete parcel
exists (Step S41:Y), the MP 121 starts execution of a data
rebuild process for the data of a single stripe (a stripe data
element) of a single rebuild-incomplete parcel (Step S42).
The data rebuild process here includes a high-speed data
rebuild process (refer to FIG. 14) and a normal data rebuild
process (refer to FIG. 16). Normally, the high-speed data
rebuild process (refer to FIG. 14) may be executed as the data
rebuild process to be executed here. Furthermore, either the
high-speed data rebuild process or the normal data rebuild
process, whichever process is selected by the user, may be
performed.

Next, the MP 121 determines whether or not all the stripe
data of the parcel has been rebuilt (Step S43). In a case where
the result thereof is that all of the stripe data has not been
rebuilt (Step S43: N), the MP 121 moves the processing to
Step S41. Alternatively, in a case where all the stripe data of
the parcel has been rebuilt (Step S43:Y), the MP 121 config-
ures the parcel status 226 of the entry corresponding to the
relevant parcel of the parcel mapping table 220 to rebuild
complete (rebuild not required) (Step S44), and moves the
processing to Step S41.

The MP 121 may execute multiple rebuild processes in
parallel for multiple rebuild-incomplete parcels. In so doing,
it is possible to reduce the rebuild processing time for the
multiple parcels. In a case where the rebuild processing is
executed in parallel, as a parcel to be targeted for one rebuild
process, the MP 121 may select from among the parcels of a
storage apparatus other than the storage apparatus comprising
the parcels (a rebuild-source parcel and a rebuild-destination
parcel) being used in the other rebuild process. In so doing, it
is possible to reduce the access contention with respect to the
storage apparatus, and to enhance the parallel effects of the
multiple rebuild processes, as a result making it possible to
effectively shorten the time required for the rebuild process-
ing.

FIG. 14 is a flowchart of a high-speed data rebuild process
related to Example 1. In this drawing, an example of a case in
which a RAID group comprises multiple lower-level storage
apparatuses 180 is illustrated.

The MP 121 determines whether or not the stripe of the
rebuild-target parcel, which is the rebuild-target area, is not
allocated to alogical page (Step S51). It is possible to discern
whether or not the stripe of the rebuild-target parcel is not
allocated to a logical page here by using the parcel mapping
table 220 to identify the virtual pool space number, the extent
number, and the drive offset # corresponding to the rebuild-
target parcel stripe, identify a physical page number based on
the relevant extent number and drive offset #, and using the
page mapping table 210 to identify whether or not the iden-
tified physical page number is associated with a logical page
number.

In a case where the result thereof is that the rebuild-target
parcel stripe is not allocated to a logical page (Step S51:Y),
the MP 121 ends the high-speed data rebuild process.

Alternatively, in a case where the rebuild-target parcel
stripe is allocated to a logical page (Step S51: N), the MP 121,
based on the parcel mapping table 220, computes the lower-
level storage apparatus 180, which stores the rebuild-source
area and the rebuild-destination area, and the location in the

10

15

20

25

30

35

40

45

50

55

60

65

18

lower-level storage apparatus 180 of the rebuild-source area
and the rebuild-destination area (Step S52). The rebuild-
source area here is an area of a stripe data element other than
the stripe data element of the rebuild-target stripe. For
example, in the case of a RAIDS 3D1P configuration, the
rebuild-source area is three areas, and in the case of a RAID6
6D2P configuration, the rebuild-source area is six areas. In a
case where the rebuild-destination area is an area of a differ-
ent lower-level storage apparatus 180 from the lower-level
storage apparatus 180 of the rebuild-source area, the rebuild-
destination area may be an arbitrary area.

Next, the MP 121 configures the destage inhibit flag in the
destage inhibit flag 244 of the cache management table 240
corresponding to the CM 131 slot, which is related to the
rebuild area (the rebuild-source area and the rebuild-destina-
tion area), to ON (Step S53). This is implemented for the
purpose of preventing the data from being updated by a host
1/0O while a data rebuild process is being executed. Next, the
MP 121 issues a parity-rebuild read command to the lower-
level storage apparatus 180 (Step S54). At this point, a
rebuild-source area belonging to the same path group from
among the rebuild-source areas identified in Step S52 is con-
figured in the rebuild-source area of the parity-rebuild read
command. In this example, the parity-rebuild read command
is not issued to the path group belonging to the lower-level
storage apparatus 180 of the rebuild-destination area.

The processor 182 of the lower-level storage apparatus
180, upon receiving the parity-rebuild read command via the
port 181, acquires the data elements and/or parity needed for
a rebuild from another lower-level storage apparatus 180 in
the same path group in accordance with executing the pro-
cessing corresponding to the parity-rebuild read command,
and based on the acquired data element and/or parity,
executes a parity rebuild operation (exclusive OR), creates an
execution result (partially rebuilt data), and sends the relevant
execution result to the transfer buffer 142 (Step S55). In
accordance with this, the execution result is stored in the
transfer buffer 142. Since only one execution result is sent
from one path group at this time, it is possible to reduce the
volume of communications between the lower-level storage
apparatus 180 and the BEPK 140. Also, since the execution
result is not stored in the CM 131, the load on the CM 131 and
the internal network 150 is reduced.

Next, the MP 121 determines whether or not the parity-
rebuild read command has been issued to all the path groups,
which include the rebuild-source area, and, in addition, all the
path groups, which do not include the rebuild-destination area
(Step S57).

In a case where the result thereof is that the parity-rebuild
read command has not been issued to all the path groups,
which include the rebuild-source area, and, in addition, all the
path groups, which do not include the rebuild-destination area
(Step S57: N), the MP 121 moves the processing to Step S54.

Alternatively, in a case where the parity-rebuild read com-
mand has been issued to all the path groups, which include the
rebuild-source area, and, in addition, all the path groups,
which do not include the rebuild-destination area (Step S57:
Y), the MP 121 issues the parity-rebuild write command and
sends one or more pieces of partially rebuilt data being stored
in the transfer buffer 142 to the rebuild-destination area
lower-level storage apparatus 180 (Step S58). The rebuild-
source area of the lower-level storage apparatus 180, which
belongs to the path group including the rebuild-destination
area lower-level storage apparatus 180 from among the
rebuild-source areas computed in Step S52, is configured in
the rebuild-source area of the parity-rebuild write command.

US 9,411,527 B2

19

The processor 182 of the lower-level storage apparatus
180, upon receiving the parity-rebuild write command,
receives the one or more pieces of partially rebuilt data being
stored in the transfer buffer 142 by executing the processing
corresponding to the parity-rebuild write command. The pro-
cessor 182 also acquires the data element and or parity needed
for a rebuild from another lower-level storage apparatus 180
in the same path group, and based on the acquired data ele-
ment and/or parity, executes a rebuild operation (exclusive
OR), and creates an execution result (partially rebuilt data).
Next, the processor 182 performs a rebuild operation (for
example, an exclusive OR) with respect to the created par-
tially rebuilt data and the partially rebuilt data acquired from
the transfer buffer 142, creates a final rebuilt data, stores this
final rebuilt data in an area specified by the parity-rebuild
write command (Step S59), and sends a response with respect
to the parity-rebuild write command to the MP 121.

The MP 121, upon receiving the response to the parity-
rebuild write command, configures the destage inhibit flag in
the destage inhibit flag 244 of the cache management table
240 corresponding to the CM 131 slot related to the rebuild
area (the rebuild-source area and the rebuild-destination area)
to OFF (Step S60), and ends the high-speed data rebuild
process.

FIG. 15 is a schematic diagram illustrating a specific
example of the high-speed data rebuild process related to
Example 1.

It is supposed here that a RAIDS (3D+1P) comprises mul-
tiple lower-level storage apparatuses 180, that data element
D1 is stored in lower-level storage apparatus #0, P-parity is
stored in lower-level storage apparatus #1, data element D2 is
stored in lower-level storage apparatus #2, and data element
D3 is stored in a lower-level storage apparatus 180 not shown
in the drawing. It is also supposed that lower-level storage
apparatus #0 and lower-level storage apparatus #1 belong to
the same path group, and that lower-level storage apparatus
#2 and lower-level storage apparatus #3 belong to the same
path group.

The high-speed data rebuild process in a case where the
lower-level storage apparatus 180 storing data element D3
fails and the data element D3 is rebuilt in lower-level storage
apparatus #3 will be explained here.

In the high-speed data rebuild process, the MP 121 issues a
parity-rebuild read command byway ofthe BE controller 143
to lower-level storage apparatus #1, which belongs to the path
group storing data element D1 and P-parity in the same row of
stripes as data element D3 ((1) in the drawing).

In the lower-level storage apparatus #1, the processor 182,
upon receiving the parity-rebuild read command, starts the
process conforming to the command, reserves a buffer in the
memory 183 of the lower-level storage apparatus #1 ((a) in
the drawing), acquires data element D1 from the lower-level
storage apparatus #0 and copies this data element D1 to the
buffer ((b) in the drawing), executes an exclusive OR with
respect to the data element D1 and the P-parity of the same
row of stripes stored in the lower-level storage apparatus #1,
and sends the execution result (D1+P) to the higher-level
storage apparatus 100 ((d) in the drawing). Thereafter, the
processor 182 releases the buffer, which had been reserved in
the memory 183 ((e) in the drawing).

In the higher-level storage apparatus 100, the MP 121
stores the execution result (D1+P) data, which has been sent
from the lower-level storage apparatus #1, in the transfer
buffer 142. The execution result (D1+P) stored in the transfer
buffer 142 is not transferred to the CM 131.

Next, the MP 121 issues via the BE controller 143 a parity-
rebuild write command to rebuild-destination lower-level

10

15

20

25

30

35

40

45

50

55

60

65

20

storage apparatus #3, which is in a different path group from
the path group to which the lower-level storage apparatus #1
belongs ((3) in the drawing).

In the lower-level storage apparatus #3, the processor 182,
upon receiving the parity-rebuild write command, starts the
process conforming to the command, reserves a buffer in the
memory 183 of the lower-level storage apparatus #3 ((f) inthe
drawing), and receives the execution result (D1+4P) trans-
ferred by the MP 121 from the transfer buffer 142 ((g) in the
drawing). Next, the processor 182 of the lower-level storage
apparatus #3 acquires from the lower-level storage apparatus
#2 the data element D2 of the same row of stripes as the data
element D3, copies this data element D2 to the buffer ((h) in
the drawing), executes an exclusive OR with respect to the
execution result (D1+4P) stored in the buffer and the data
element D2, rebuilds the data element D3, and stores the data
element D3 in the rebuild-destination area of the lower-level
storage apparatus #3 ((i) in the drawing).

According to the above-described processing, the data sent
to the transfer buffer 142 from a single path group is a single
execution result, thereby making it possible to reduce the
amount of data transferred between the lower-level storage
apparatus 180 and the BEPK 140. Also, the execution result,
which is sent from the BEPK 140 to the rebuild-destination
lower-level storage apparatus 180, is the number of the trans-
fer-source path groups (one in this example), making it pos-
sible to reduce the amount of data transferred between the
lower-level storage apparatus 180 and the BEPK 140.

FIG. 16 is a flowchart of a normal data rebuild process
related to Example 1.

The MP 121 determines whether or not the stripe of the
rebuild-target parcel, which is the rebuild-target area, is not
allocated to a logical page (Step S61). It is possible to discern
whether or not the stripe of the rebuild-target parcel is not
allocated to a logical page here by using the parcel mapping
table 220 to identify the virtual pool space number, the extent
number, and the drive offset # corresponding to the rebuild-
target parcel stripe, and identify a physical page number
based on the relevant extent number and drive offset #, and
using the page mapping table 210 to identify whether or not
the identified physical page number is associated with a logi-
cal page number.

In a case where the result thereof is that the rebuild-target
parcel stripe is not allocated to a logical page (Step S61:Y),
the MP 121 ends the normal data rebuild process.

Alternatively, in a case where the rebuild-target parcel
stripe is allocated to a logical page (Step S61: N), the MP 121,
based on the parcel mapping table 220, computes the lower-
level storage apparatus 180, which stores the rebuild-source
area and the rebuild-destination area, and the locations in the
lower-level storage apparatus 180 of the rebuild-source area
and the rebuild-destination area (Step S62).

Next, the MP 121 reserves a cache slot for storing the data
of'the rebuild-source area in the CM 131, and acquires a lock
for the reserved cache slot (Step S63). Next, the MP 121
transfers the data element and/or parity of the rebuild-source
area from the rebuild-source area lower-level storage appara-
tus 180 to the lock-acquired cache slot byway of the transfer
buffer 142 (Step S64).

Next, the MP 121 determines whether or not the data ele-
ment and/or parity of the rebuild-source area has been trans-
ferred from all the rebuild-source area lower-level storage
apparatuses 180 (Step S66), and in a case where the result
thereof is that the data element and/or parity of the rebuild-
source area has not been transferred from all the rebuild-
source area lower-level storage apparatuses 180 (Step S66:
N), the MP 121 moves the processing to Step S63, and

US 9,411,527 B2

21

executes processing for the rebuild-source area lower-level
storage apparatus 180, which has not been a target of the
processing. Alternatively, in a case where the data element
and/or parity of the rebuild-source area has been transferred
from all the rebuild-source area lower-level storage appara-
tuses 180 (Step S66:Y), the MP 121 advances the processing
to Step S67.

Next, the MP 121 reserves a cache slot for storing the
rebuilt data in the CM 131 (Step S67). Next, the MP 121,
based on the multiple pieces of rebuild-source area data in the
CM 131, creates rebuilt data by executing the arithmetic
processing for rebuilding the data, and stores the rebuilt data
in the cache slot in the CM. 131 (Step S68). The rebuilt data
is subsequently stored in the lower-level storage apparatus
180 when the bulk writing process shown in FIG. 12 is
executed. Next, the MP 121 releases the cache slot of the CM.
131, where the rebuild-source area data had been stored (Step
S69), and ends the normal data rebuild process.

FIG. 17 is a diagram showing an example of a management
screen of the management server related to Example 1.

The management screen 300 is for the user to specify atype
of data rebuild process for a data unit being managed in an
area belonging to each pool. The management screen 300
comprises a data rebuild process setting area 310 in which are
displayed radio buttons for specifying either the “ON” setting
for the rebuild high-speed mode, that is, for executing the
high-speed data rebuild process, or the “OFF” setting for not
executing the high-speed data rebuild process. The setting
content corresponding to the radio button selected using this
data rebuild process setting area 310 is sent from the man-
agement server 20 to the higher-level storage apparatus 100,
and, for example, is managed in the LM 122. The MP 121
executes the data rebuild process based on the setting content
of'the LM 122 when performing the data rebuild processing in
Step S42 of FIG. 13.

The content for configuring a data rebuild process, which is
to be executed having a pool as a unit, has been explained, but,
for example, a data rebuild process to be executed having a
virtual volume as a unit may be configured, or a data rebuild
process to be executed having a higher-level storage appara-
tus as a unit may be configured.

Example 2

Example 2 will be explained next.

Example 2 is such that the virtual pool space 52 in Example
1 is configured as a RAID6 RAID group. Explanations of
parts that are the same as Example 1 will be omitted.

FIG. 18 is a logical block diagram of data related to
Example 2.

A virtual volume 50 recognizable to the host 10 comprises
multiple virtual pages 51. A physical page 55 of a virtual pool
space 52 is allocated to a virtual page 51.

An extent 53 is managed in the virtual pool space 52. The
extent 53 comprises multiple parcels (Parcel) 54. The parcel
54 comprises consecutive areas in a single storage apparatus
(for example, a lower-level storage apparatus 180). In FIG.
18, the parcel 54 comprises four stripes 57.

In the case of a RAID6 (6D+2P) configuration, that is, a
configuration in which six data elements (D), which comprise
a data unit, and two parity (P, Q) corresponding to these data
elements are stored in respectively different storage appara-
tuses as shown in FIG. 18, for example, the extent 53 com-
prises eight different lower-level storage apparatus 180 par-
cels 54. Since a distributed RAID configuration has been
adopted in this example, the extent 53 comprises the parcels
54 of eight different lower-level storage apparatuses 180 from

20

30

35

40

45

50

22

among multiple (for example, 16) lower-level storage appa-
ratuses 180, which comprise the storage area of the virtual
pool space 52, and the combination of the storage apparatuses
180, which comprise the parcels 54 making up each extent 53,
is not fixed.

The extent 53 comprises multiple (for example, two)
physical pages 55. The physical page 55 is able to store the
data elements of multiple (for example, two) data units and
parity (data in the same row of stripes 56). In this drawing,
reference signs, which have a numeral following a “ > in
common, such as D1_1, D2_1, D3_1, D4_1, D5_1, D6_1,
P_1,and Q_1,indicate data elements in the same dataunit and
parity. The data element and the parity are the size of a stripe
57.

In FIG. 18, an example, which configures a virtual pool
space 52 using a RAID group of RAID6 having a 6D+2P
configuration has been given, but the configuration of the
RAID group is not limited thereto, and the number of Ds (the
number of data elements) may be increased to achieve a
14D+2P configuration. In the extent 53, the parity may be
stored in the same parcel as in RAID4. The method for encod-
ing the Q-parity is not limited to a Galois computation, and
may use another generally known method, such as the
EVENODD method.

FIG. 19 is a diagram showing an example of a Galois
computation coefficient table related to Example 2.

The Galois computation coefficient table 250 is for man-
aging the Galois computation coefficient used in the opera-
tion utilized when creating the RAID6 Q-parity and when
rebuilding a data element using the Q-parity. The Galois
computation coefficient table 250 is stored in the shared
memory 200, and physically, for example, in the LM 122 of
the higher-level storage apparatus 100, and the MP 121 of'the
higher-level storage apparatus 100 stores the Galois compu-
tation coefficient table 250 in the memory 183 of the lower-
level storage apparatus 180.

The Galois computation coefficient table 250 comprises
the fields of a RAID type 251, a coefficient 252, and a value
253. A type indicating the configuration of the data elements
and parity in the RAIDG is stored in the RAID type 251. A
coefficient, which is used in the encoding of the Q-parity ina
RAID group of a configuration corresponding to the type in
the RAID type 251 of the entry, is stored in the coefficient
252. A value corresponding to the coefficient in the coeffi-
cient 252 of the entry is stored in the value 253. Referencing
the Galois computation coefficient table 250 makes it pos-
sible to encode the Q-parity of the RAID group.

FIG. 20 is a diagram illustrating a method for creating
rebuild data in the RAID.

This table shows the corresponding relationship among a
number, a category, a loss category, a lost data type, and a
method for creating rebuild data. The number (#) shows the
number of an entry (row). The category shows the RAID
level. The loss category shows the extent of the data loss. As
the extent of loss, there is a single failure in which a single
stripe data element in a row of stripes has been lost, and a
double failure in which two stripe data elements in a row of
stripes have been lost. The lost data type shows the type of
data, which was lost. The data types include Dm and Dn,
which indicate data elements, and P and Q, which indicate
parity. The rebuild data creation method shows the method for
creating rebuild data in a case where the extent of loss of the
same row has occurred with respect to the RAID level of the
same row, and data of the lost data type of the same row was
lost.

Specifically, according to row #1, it is clear that in a case
where a single failure has occurred in RAIDS and data ele-

US 9,411,527 B2

23

ment Dm has been lost, the data element Dm can be rebuilt
using one type of data, which is the operational result of the
following (math 1).

(P+3Di) [Math 1]

In accordance with this, in the high-speed data rebuild
process, the processor 182 of the lower-level storage appara-
tus 180 operates on either the (math 1) or a portion of the
relevant formula, and sends the result thereof to the higher-
level storage apparatus 100. Also, according to row #6, it is
clear that in a case where a double failure has occurred in
RAID®6 and the two data elements Dm and Dn have been lost,
the data elements Dm and Dn can be rebuilt using two types
of' data—the operational results of the following (math 2) and

(math 3).
(P+2D) [Math 2]
(Q+24ixDi) [Math 3]

Since the method for rebuilding Dm and Dn based on these
operational results is known, an explanation thereof will be
omitted here. In accordance with this, in the high-speed data
rebuild process, the processor 182 of the lower-level storage
apparatus 180 operates on either the (math 2) and (math 3) or
aportion of the formulas thereof, and sends the result thereof
to the higher-level storage apparatus 100.

In Example 2, the processor 182 of the lower-level storage
apparatus 180 creates either rebuilt data or partially rebuilt
data from multiple data elements and/or parity in accordance
with the rebuild data creation method shown in FIG. 20. In so
doing, the processor 182 performs arithmetic processing by
referencing the Galois computation coefficient table 250
stored in the memory 183 as needed.

Example 3

Example 3 will be explained next.

With regard to the processing executed in the data rebuild
process (Step S42 of FIG. 13) in Example 1, Example 3
selects, from between the high-speed data rebuild process and
the normal data rebuild process, the process estimated to take
less time for data rebuild processing. Explanations of parts
that are the same as Example 1 will be omitted.

FIG. 21 is a flowchart of a rebuild process selection process
related to Example 3.

The rebuild process selection process is executed in Step
S42 of FIG. 13 of Example 1. The MP 121 estimates the
data-rebuild effect, and determines which of the high-speed
data rebuild process and the normal data rebuild process is
more effective (Step S71). With regard to the estimate of the
data-rebuild effect, for example, (1) the MP 121 computes the
number of transfer-target stripe data elements (the rebuild-
source stripe data element and the rebuild-destination stripe
data element) in the rebuild-target row of stripes (referred to
as DN) and the number of path groups in which the transfer-
target stripe data elements are stored (referred to as PN). (2)
The MP 121 computes the number of transfers (DNx2) by the
BE controller 143 for the normal data rebuild process. (3) The
MP 121 computes the number of transfers (number of trans-
fers=(PN-1)x2xnumber of failed drives in row of stripes) by
the BE controller 143 for the high-speed data rebuild process.
(4) The MP 121 compares the number of transfers of the
normal data rebuild process acquired in (2) to the number of
transfers of the high-speed data rebuild process acquired in
(3), and determines that the process with the fewer number of
transfers is the effective data rebuild process. The data-re-
build effect estimate is not limited to this, and, for example,

15

35

40

45

50

55

60

24

may be such that the normal data rebuild process is selected in
accordance with the load status of the lower-level storage
apparatus 180.

Next, the MP 121 determines whether or not the result of
the estimate is that the high-speed data rebuild process is the
most effective (Step S72), and in a case where the high-speed
data rebuild process has been determined to be eftective (Step
S72:Y), executes the high-speed data rebuild process (FIG.
14) (Step S73), and, alternatively, in a case where the high-
speed data rebuild process has been determined not to be
effective (Step S72: N), executes the normal data rebuild
process (FIG. 16) (Step S74).

By executing the rebuild process selection process, it is
possible to execute either the high-speed data rebuild process
or the normal data rebuild process by selecting the one, which
is estimated to take less time for data rebuild processing.

For example, in a case where the virtual pool space 52 is a
RAID6 (6D+2P) configuration, the following takes place
when the rebuild process selection process is executed for a
certain row of stripes in which data elements D1 and D2 are
stored in path group 1, data elements D3 and D4 are stored in
path group 2, P-parity is stored in path group 3, data element
D5 is stored in path group 4, the storage apparatus storing data
element D6 fails, and a storage apparatus of path group 3
serves as the rebuild-destination area for the data element D6.

Since the RAID group is the 6D2P configuration, and the
Q-parity need not be used in this example, the MP 121 com-
putes DM=6+2-1=7, and since the transfer-target stripe data
elements (D1 through D4, P, and D5, which is to be rebuilt)
are included in the four path groups 1 through 4, computes
PN=4. The MP 121 computes the number of transfers by the
BE controller 143 for the normal data rebuild process as being
equal to DNx2=14. The MP 121 computes the number of
transfers by the BE controller 143 for the high-speed data
rebuild process as being equal to (PN-1)x2xthe number of
failed drives in the row of stripes (4—1)x2x1=6. According to
the results, the number of transfers by the BE controller 143
for the high-speed data rebuild process is less than the number
of transfers by the BE controller 143 for the normal data
rebuild process, and as such, the MP 121 determines that the
high-speed data rebuild process is more effective, and
executes the high-speed data rebuild process.

Also, for example, in a case where the virtual pool space 52
is a RAID6 (3D+2P) configuration, the following takes place
when the rebuild process selection process is executed for a
certain row of stripes in which data element D1 is stored in
path group 1, P-parity is stored in path group 2, Q-parity is
stored in path group 4, the two storage apparatuses storing
data elements D2 and D3 fail, a storage apparatus of path
group 3 serves as the rebuild-destination area for the data
element D2, and a storage apparatus of path group 4 serves as
the rebuild-destination area for the data element D3.

Since the RAID group is the 3D2P configuration, the MP
121 computes DN=3+2=5, and since the transfer-target stripe
data elements (D1, P, Q, and D2 and D3, which are to be
rebuilt) are included in the four path groups 1 through 4,
computes PN=4. The MP 121 computes the number of trans-
fers by the BE controller 143 for the normal data rebuild
process as being equal to DNx2=10. The MP 121 computes
the number of transfers by the BE controller 143 for the
high-speed data rebuild process as being equal to (PN-1)x2x
the number of failed drives in the row of stripes (4—1)x2x
2=12. According to the results, the number of transfers by the
BE controller 143 for the normal data rebuild process is less
than the number of transfers by the BE controller 143 for the
high-speed data rebuild process, and as such, the MP 121

US 9,411,527 B2

25

determines that the normal data rebuild process is more effec-
tive, and executes the normal data rebuild process.

Example 4

A computer system related to Example 4 will be explained
next.

Example 4 executes high-speed data rebuild processing in
the data rebuild process (Step S42 of FIG. 13) of Example 1,
and performs normal data rebuild processing when the high-
speed data rebuild process fails. Explanations of parts that are
the same as Example 1 will be omitted.

FIG. 22 is a flowchart of a data rebuild process related to
Example 4.

The MP 121 executes the high-speed data rebuild process
(FIG. 14) (Step S75). Next, the MP 121 determines whether
or not the high-speed data rebuild process has failed (Step
S76), and in a case where the high-speed data rebuild process
has not failed (Step S76: N), ends the data rebuild processing.

Alternatively, in a case where the high-speed data rebuild
process has failed (Step S76: Y), the MP 121 reads a stripe
data element in the high-speed data rebuild process, and
issues a rebuild cancel order to the lower-level storage appa-
ratus 180, which executes the process for writing the stripe
data element (Step S77). The processor 182 of the lower-level
storage apparatus 180, which receives the rebuild cancel
order, releases the memory 183 buffer, which was reserved in
the high-speed data rebuild process. Next, the MP 121
executes the normal data rebuild process (FIG. 16) (Step
S78).

According to the computer system related to Example 4, it
is possible to perform an appropriate data rebuild using the
normal data rebuild process even in a case where the high-
speed data rebuild process has failed.

Example 5

A computer system related to Example 5 will be explained
next.

Example 5 couples multiple external storage apparatuses
40 to the higher-level storage apparatus 100, configures a
RAID group from multiple external storage apparatuses 40,
and uses the area of this RAID group as the storage arca of a
virtual pool space 52.

FIG. 23 is a block diagram of an external storage apparatus
related to Example 5.

The external storage apparatus 40 comprises a port 41, a
processor 42, a memory 43, a backend controller 44, and one
or more flash memory chips 45.

The port 41 is an interface for carrying out communications
with either the port 111 of the FEPK 110, or another external
storage apparatus 40. The memory 43 stores a program and
various types of information. The processor 42 executes a
program stored in the memory 43, and performs various pro-
cessing by using the information stored in the memory 43. In
this example, the processor 42 executes processing corre-
sponding to each type of command sent from the higher-level
storage apparatus 100 via the port 111. The types of com-
mands here are the same as the commands that the MP 121
sends to the lower-level storage apparatus 180 in Example 1,
and the processor 42 executes the same processing as that of
the processor 182 of the lower-level storage apparatus 180
with respect to these commands. The processor 42 also
executes the same arithmetic processing as the parity operator
141. The backend controller 44 mediates the exchange of data
with the flash memory chip 45. The flash memory chip 45, for
example, may be a NAND-type flash memory chip, may be

10

15

20

25

30

35

40

45

50

55

60

65

26

another type (for example, a NOR type) of flash memory, or
may be a PRAM or a ReRAM. Alternatively, it may be a
magnetic disk.

In the computer system related to Example 5, the external
storage apparatus 40 performs the processing, which was
performed by the lower-level storage apparatus 180 in
Example 1, and the higher-level storage apparatus 100 per-
forms by way of the FEPK 110 the processing, which had
been done viathe BEPK 140 in Example 1. In Example 5, for
example, a group of multiple external storage apparatuses 40
coupled to the same port 111 are treated the same as an
identical path group for lower-level storage apparatuses 180,
and for the sake of convenience, will be referred to as a path
group. Multiple external storage apparatuses 40, which are
coupled to the same port 111, may be in different site, that is,
multiple external storage apparatuses 40 are coupled via a
switch which is in local site and an extender.

FIG. 24 is a diagram illustrating a high-speed data rebuild
process related to Example 5.

It is supposed here that multiple external storage appara-
tuses 40 comprise a RAIDS (3D+1P), a data element D1 is
stored in an external storage apparatus #0, a P-parity is stored
in an external storage apparatus #1, a data element D2 is
stored in an external storage apparatus #2, and a data element
D3 is stored in an external storage apparatus 40 not shown in
the drawing. It is also supposed that the external storage
apparatus #0 and the external storage apparatus #1 belong to
the same path group, and that the external storage apparatus
#2 and the external storage apparatus #3 belong to the same
path group.

A high-speed data rebuild process in a case where the
external storage apparatus 40 storing the data element D3
fails and the data element D3 is rebuilt in the external storage
apparatus #3 will be explained here.

Inthe high-speed data rebuild process, the MP 121 issues a
parity-rebuild read command via the port 111 of the FEPK
110 to the external storage apparatus #1 in the path group
storing the data element D1 and P-parity in the same row of
stripes as the data element D3 ((1) in the drawing).

In the external storage apparatus #1, upon receiving the
parity-rebuild read command, the processor 42 starts the pro-
cess conforming to the command, reserves a buffer in the
memory 43 of the external storage apparatus #1 ((a) in the
drawing), acquires the data element D1 from the external
storage apparatus #0 and copies this data element D1 to the
buffer ((b) in the drawing), executes an exclusive OR with
respect to the data element D1 and the P-parity of the same
row of stripes stored in the external storage apparatus #1, and
sends the execution result (D1+P) to the higher-level storage
apparatus 100 ((d) in the drawing). Thereafter, the processor
42 releases the buffer, which had been reserved in the memory
43 ((e) in the drawing).

In the higher-level storage apparatus 100, the MP 121
stores the data of the execution result (D1+4P) sent from the
external storage apparatus #1 in the transfer buffer 142. The
execution result (D1+P), which is stored in the transfer buffer
142, is not transferred to the CM 131.

Next, the MP 121 issues a parity-rebuild write command
via the port 111 to the rebuild-destination external storage
apparatus #3 of a different path group from the path group to
which the external storage apparatus #1 belongs ((3) in the
drawing).

In the external storage apparatus #3, upon receiving the
parity-rebuild write command, the processor 42 starts the
process conforming to the command, reserves a buffer in the
memory 43 of the external storage apparatus #3 ((f) in the
drawing), and receives the execution result (D1+4P) trans-

US 9,411,527 B2

27

ferred from the transfer buffer 142 by the MP 121 ((g) in the
drawing). Next, the processor 42 of the external storage appa-
ratus #3 acquires the data element D2 of the same row of
stripes as the data element D3 from the external storage
apparatus #2, copies this data element D2 to the buffer ((h) in
the drawing), executes an exclusive OR with respect to the
execution result (D1+4P) stored in the buffer and the data
element D2, rebuilds the data element D3, and stores the data
element D3 in the rebuild-destination area of the external
storage apparatus #3 ((i) in the drawing).

According to the processing described above, data, which
is sent to the transfer buffer 142 from a single path group is a
single execution result, and it is possible to reduce the amount
of data transferred between the external storage apparatus 40
and the FEPK 110. Also, the execution result, which is sent to
the rebuild-destination external storage apparatus #3 from the
FEPK 110, is the number of the transfer-source path groups
(one in this example), making it possible to reduce the amount
of data transferred between the external storage apparatus 40
and the FEPK 110.

A computer system related to Example 6 will be explained
next.

Example 6

Example 6 stores partially rebuilt data computed based on
a stripe data element of the same row of stripes in a path group
to which one or more storage apparatuses (either lower-level
storage apparatuses 180 or external storage apparatuses 40)
belong, and subsequently uses this partially rebuilt data to
rebuild a stripe data element. In a case where the throughput
of the BE controller or the network for coupling thereto is
lower than the throughput of the network interconnecting the
lower-level storage apparatuses, whereas the processing for
creating the partially rebuilt data is carried out at highspeed,
the rebuild process via the higher-level storage apparatus
could be delayed, dragging down the throughput and causing
a drop in rebuild processing performance. In this case, the
storage of partial data in free parcels of lower-level storage
apparatuses in the respective path groups can make it possible
to deal with the failure of yet another lower-level storage
apparatus during rebuild execution, enabling reliability to be
enhanced.

FIG. 25 is a diagram showing an example of a parcel
mapping table related to Example 6.

The parcel mapping table 260 is for managing a physical
parcel allocated to an extent. The parcel mapping table 260
manages an entry comprising the fields of a virtual pool space
number 261, an extent number (#) 262, a drive offset number
(#) 263, a physical drive number (#) 264, a physical parcel
number (#) 265, a parcel status 266, and a rebuild data type
267. Each field is basically the same as the field of the same
name shown in FIG. 7. The differences with the parcel map-
ping table 220 will be explained here.

In the parcel mapping table 260 of Example 6, multiple
physical parcels can be correspondingly managed with
respect to a drive offset in the same extent of the same virtual
pool space. Thatis, multiple physical drive #s, physical parcel
numbers, parcel statuses, and rebuild data types can be cor-
respondingly stored with respect to the same drive offset of
the same extent of the same virtual pool space.

In addition, “partially rebuilt data stored”, which indicates
that partially rebuilt data computed based on a portion of the
stripe data elements in the same row of stripes is being stored,
has been added anew as one of the parcel statuses stored in the
parcel status 266.

10

15

20

25

30

35

40

45

50

55

60

65

28

In a case where the parcel status 266 in the same extent is
“partially rebuilt data stored”, information showing the data
element and/or parity used for computing the partially rebuilt
data is stored in the rebuild data type 267.

This drawing shows that for drive offset “3” of extent “0” in
virtual pool space “2”, rebuild-required data is stored in
physical parcel “1” of physical drive “1”, and partially rebuilt
data is stored in physical parcel “4” of physical drive “2”, and
the partially rebuilt data is data element D1+P-parity.

FIG. 26 is a diagram illustrating processing for creating
partially rebuilt data in the rebuild process related to Example
6.

It is supposed here that multiple lower-level storage appa-
ratuses 180 comprise a RAIDS (3D+1P), a data element D1 is
stored in a lower-level storage apparatus #0, a P-parity is
stored in a lower-level storage apparatus #1, a data element
D2 is stored in a lower-level storage apparatus #3, and a data
element D3 is stored in a lower-level storage apparatus 180
not shown in the drawing. It is supposed that this lower-level
storage apparatus 180 has failed, and Example 6 shows
rebuild processing in path groups in a state in which the data
element D3 has been lost. It is also supposed that the lower-
level storage apparatus #0, the lower-level storage apparatus
#1, and a lower-level storage apparatus #2 belong to the same
path group, and that the lower-level storage apparatus #3 and
a lower-level storage apparatus #4 belong to the same path
group.

The partially rebuilt data creation process shown in FIG.
26, for example, is executed at an arbitrary point in time. The
MP 121 sends a command for creating partially rebuilt data in
each path group to each of the lower-level storage apparatus
#2 and the lower-level storage apparatus #4.

The lower-level storage apparatus #2 reserves a buffer in
the memory 183 of the lower-level storage apparatus #2,
acquires the data element D1 from the lower-level storage
apparatus #0 of the same path group 170, and copies this data
element D1 to the buffer, and, in addition, acquires the P-par-
ity from the lower-level storage apparatus #1, copies this
P-parity to the buffer, executes an exclusive OR with respect
to the data element D1 and the P-parity, which have been
copied to the buffer, stores an execution result (D1+4P) in a
newly reserved parcel of the lower-level storage apparatus #2,
and returns a command response to the higher-level storage
apparatus 100.

The MP 121 of the higher-level storage apparatus 100,
which receives the command response, adds an entry corre-
sponding to the row of stripes targeted for creating the par-
tially rebuilt data, that is, an entry, which shares a virtual pool
space number, an extent #, and a drive offset # in common, to
the parcel mapping table 260, and in this entry, configures the
parcel status 266 to “partially rebuilt data stored”, stores a
rebuild-destination physical drive # in the physical drive
#264, stores a rebuild-destination physical parcel # in the
physical parcel #265, and stores (D1+P), which shows the
stripe data elements used in the creation of the partially rebuilt
data, in the rebuild data type 267.

The lower-level storage apparatus #4, which belongs to a
different path group 170, reserves a buffer in the memory 183
of the lower-level storage apparatus #4, acquires the data
element D2 from the lower-level storage apparatus #3, stores
this data element D2 in a newly reserved parcel of the lower-
level storage apparatus #4, and returns a command response
to the higher-level storage apparatus 100.

The MP 121 of the higher-level storage apparatus 100,
which receives the command response, adds an entry corre-
sponding to the row of stripes targeted for creating the par-
tially rebuilt data, that is, an entry, which shares a virtual pool

US 9,411,527 B2

29

space number, an extent #, and a drive offset # in common, to
the parcel mapping table 260, and in this entry, configures the
parcel status 266 to “partially rebuilt data stored”, stores a
rebuild-destination physical drive # in the physical drive
#264, stores a rebuild-destination physical parcel # in the
physical parcel #265, and stores (D2), which shows the stripe
data element used in the creation of the partially rebuilt data,
in the rebuild data type 267.

FIG. 27 is a diagram illustrating data rebuild processing in
the rebuild process related to Example 6.

A rebuild process for data spanning path groups (continu-
ation of FIG. 26) during data rebuild processing in a case
where a lower-level storage apparatus 180 storing a data
element D3 fails, and the data element D3 is rebuilt in a
lower-level storage apparatus #4 will be explained here. This
process is executed asynchronously to the rebuild processing
for the data in the path groups of FIG. 26 based on the partially
rebuilt data, which has been created.

The MP 121 references the parcel mapping table 260 and
identifies a parcel storing partially rebuilt data needed to
rebuild the data element D3, that is, a parcel of the lower-level
storage apparatus #2. Next, the MP 121 stores a partially
rebuilt data (D1+P) from the lower-level storage apparatus #2
in the transfer buffer 142 by way of the BE controller 143 of
the BEPK 140. The partially rebuilt data (D1+P) stored in the
transfer buffer 142 is not transferred to the CM 131. Subse-
quently, the processor 182 of the lower-level storage appara-
tus #2 releases the parcel, which had stored the execution
result. In accordance with this, the MP 121 removes the entry
corresponding to the parcel, which was released from the
parcel mapping table 260.

Next, the MP 121 stores the partially rebuilt data (D1+4P) in
a buffer of the memory 183 of the lower-level storage appa-
ratus #4 by way of the BE controller 143. The processor 182
of'the lower-level storage apparatus #4 executes an exclusive
OR with respect to the partially rebuilt data (D1+P) being
stored in the buffer and the data element D2 being stored in
the parcel, and stores the execution result thereof, that is, the
data element D3 in the lower-level storage apparatus #4.

Subsequently, the processor 182 of the lower-level storage
apparatus #4 releases the parcel storing the data element D2.
In accordance with this, the MP 121 removes the entry cor-
responding to the parcel, which was released from the parcel
mapping table 260.

According to this data rebuild process, the higher-level
storage apparatus 100, by acquiring partially rebuilt data from
a lower-level storage apparatus 180 and sending this partially
rebuilt data to the lower-level storage apparatus 180, which
will perform the rebuild process, is able to store the rebuilt
data in the lower-level storage apparatus 180. For this reason,
the higher-level storage apparatus 100 can reduce the amount
of communications with the lower-level storage apparatus
180. Also, since the partially rebuilt data in this data rebuild
process is not stored in the CM 131 in the higher-level storage
apparatus 100, the load on the CM 131 and the load on the
internal network 150 can be held in check.

FIG. 28 is a first diagram illustrating a failure handling
process during a rebuild related to Example 6.

FIG. 28 shows a failure handling process in a case where a
lower-level storage apparatus #0, which is storing a data
element D1, fails in the state shown in FIG. 26, and the data
element D1 is rebuilt in a lower-level storage apparatus #2.

The MP 121 references the parcel mapping table 260,
identifies the lower-level storage apparatus #2, which is stor-
ing the partially rebuilt data computed using the data element
D1, and sends a command for rebuilding the data element D1
to the relevant lower-level storage apparatus #2. The proces-

10

20

40

45

55

30

sor 182 of the lower-level storage apparatus #2 reserves a
buffer in the memory 183, acquires a P-parity from the lower-
level storage apparatus #1 of the same path group 170, copies
this P-parity to the buffer, executes an exclusive OR with
respect to the P-parity, which was copied to the buffer, and the
partially rebuilt data (D1+P) being stored in the parcel,
rebuilds the data element D1, and stores the data element D1
in a newly reserved parcel of the lower-level storage appara-
tus #2. According to this failure handling process, it is pos-
sible to use partially rebuilt data to rebuild a data element in a
single path group, thereby enabling the data rebuild to be
performed rapidly.

FIG. 29 is a second diagram illustrating the failure han-
dling process during a rebuild related to Example 6.

FIG. 29 shows a failure handling process in a case where a
lower-level storage apparatus #1, which is storing a P-parity,
fails in the state shown in FIG. 26, and the P-parity is rebuilt
in a lower-level storage apparatus #2.

The MP 121 references the parcel mapping table 260,
identifies the lower-level storage apparatus #2, which is stor-
ing the partially rebuilt data computed using the P-parity, and
sends a command for rebuilding the P-parity to the relevant
lower-level storage apparatus #2. The processor 182 of the
lower-level storage apparatus #2 reserves a buffer in the
memory 183, acquires the data element D1 from a lower-level
storage apparatus #0 of the same path group 170, copies this
data element D1 to the buffer, executes an exclusive OR with
respect to the data element D1, which was copied to the
buffer, and the partially rebuilt data (D1+P) being stored in
the parcel, rebuilds the P-parity, and stores the P-parity in a
newly reserved parcel of the lower-level storage apparatus #2.

According to this failure handling process, it is possible to
use partially rebuilt data to rebuild a parity in a single path
group, thereby enabling the data rebuild to be performed
rapidly.

FIG. 30 is a third diagram illustrating the failure handling
process during a rebuild related to Example 6.

FIG. 30 shows the failure handling process in a case where
a lower-level storage apparatus #3, which is storing a data
element D2, has failed in the state shown in FIG. 26.

In this case, the partially rebuilt data in the relevant path
group, in this example, the data element D2 is stored in a
lower-level storage apparatus #4, which is in the same path
group as the lower-level storage apparatus #3. Thus, the data
element D2 can be acquired from the lower-level storage
apparatus #4.

As described hereinabove, in a case where a rebuild pro-
cess for data spanning path groups has not been completed,
but the creation of partially rebuilt data for the path groups has
been completed, a data rebuild can be executed even when a
failure occurs in another lower-level storage apparatus, and,
in addition, the data rebuild can be performed rapidly in
accordance with reducing the amount of path group-spanning
data that is transferred.

Example 7

A computer system related to Example 7 will be explained
next.

Example 7 uses a readable lower-level storage apparatus
180 in a case where the lower-level storage apparatus 180, for
example, is a storage medium, such as a flash memory device,
which is capable of being read even when a failure has
occurred and a write has become impossible. The shared
memory 200 of Example 7, in addition to storing a rebuilt
bitmap table 270 in the shared memory 200 of Example 1,

US 9,411,527 B2

31

also stores a parcel mapping table 280 instead of the parcel
mapping table 210, and a drive status table 290 instead of the
drive status table 230.

FIG. 31 is a diagram showing an example of a rebuilt
bitmap table related to Example 7.

The rebuilt bitmap table 270 is for managing the rebuild
status of data stored in a parcel. The rebuilt bitmap table 270
manages an entry comprising the fields of a physical drive
#271, a physical parcel #272, and a rebuild bitmap 273.

The number of a lower-level storage apparatus 180 (a
physical drive #) is stored in the physical drive #271. The
number of a physical parcel (a physical parcel #) in the lower-
level storage apparatus 180 corresponding to the physical
drive # in the physical drive #271 is stored in the physical
parcel #272. An aggregate of bits showing whether or not a
rebuild has been done (a bitmap) corresponding to each sub-
block in the physical parcel of the physical parcel #272 of the
same entry is stored in the rebuild bitmap 273. In this
example, in a case where a sub-block has been rebuilt, “1” is
configured in the bit corresponding to the sub-block, and in a
case where a sub-block has not been rebuilt, “0” is configured
in the bit corresponding to the sub-block. This example man-
ages whether or not rebuilding has been performed in units of
sub-blocks, but the example is not limited to this, and, for
example, may manage whether or not rebuilding has been
performed having a larger unit (a slot, a piece of stripe data, a
parcel, and so forth) as the unit.

FIG. 32 is a diagram showing an example of a parcel
mapping table related to Example 7.

The parcel mapping table 280 is for managing a physical
parcel allocated to an extent. The parcel mapping table 280
manages an entry comprising the fields of a virtual pool space
number 281, an extent number (#) 282, a drive offset number
(#) 283, a physical drive number (#) 284, a physical parcel
number (#) 285, and a parcel status 286. Each field is basically
the same as the field of the same name shown in FIG. 7. The
differences with the parcel mapping table 220 will be
explained here.

In the parcel mapping table 280, multiple physical parcels
can be correspondingly managed with respect to a drive offset
of the same extent in the same virtual pool space. That is,
multiple physical drive #s, physical parcel numbers, and par-
cel statuses can be correspondingly stored with respect to the
same drive offset of the same extent in the same virtual pool
space.

In addition, “rebuilt data storage”, which indicates a parcel
in which rebuilt data is stored in the same row of stripes, has
been added anew as one of the parcel statuses stored in the
parcel status 286.

This drawing shows that for drive offset “3” of extent “0” in
virtual pool space “2”, rebuild-required data, that is, old data
is stored in physical parcel “1” of physical drive “1”, and
rebuilt data is stored in physical parcel “4” of physical drive
“27.

FIG. 33 is a diagram showing an example of a drive status
table related to Example 7.

The drive status table 290 is for managing the status of a
physical drive comprising a virtual pool space. The drive
status table 290 manages an entry comprising the fields of a
virtual pool space number 291, a physical drive number 292,
a number of errors (Read) 293, a number of errors (Write)
294, and a status 295.

The number of a virtual pool space (a virtual pool space
number) is stored in the virtual pool space number 291. The
number (a physical drive number) of a physical drive com-
prising the virtual pool space corresponding to the virtual
pool space number in the virtual pool space number 291 of the

10

15

20

25

30

35

40

45

50

55

60

65

32

entry is stored in the physical drive number 292. A number of
errors at the time of a Read (a number of read errors) in a
lower-level storage apparatus 180 corresponding to the physi-
cal drive number in the physical drive number 292 is stored in
the number of errors (Read) 293. A number of errors at the
time of a Write (a number of write errors) in a lower-level
storage apparatus 180 corresponding to the physical drive
number in the physical drive number 292 is stored in the
number of errors (Write) 294. The status of a physical drive (a
lower-level storage apparatus 180) corresponding to the
physical drive number in the physical drive number 292 of the
entry is stored in the status 295. As the status of a physical
drive, there can be configured “normal”, which indicates that
the physical drive is normal, “abnormal (inaccessible)”,
which indicates that it is not possible to read and write to the
physical drive, and “abnormal (W not possible)”, which indi-
cates that it is only writing to the physical drive is not possible.

FIG. 34 is a flowchart of a failure detection process related
to Example 7.

The failure detection process, for example, is executed at
each prescribed time for the lower-level storage apparatus
180 of each physical drive number stored in the physical drive
number 292 of the drive status table 290. The MP 121 refer-
ences the entry corresponding to the processing-target lower-
level storage apparatus 180 of the drive status table 290, and
determines whether or not the number of write errors stored in
the number of errors (Write) 294 of the relevant entry exceeds
aprescribed write error-related threshold (Step S81). Ina case
where the result thereof is that the number of write errors does
not exceed the prescribed write error-related threshold (Step
S81: N), the MP 121 ends the failure detection processing.

The MP 121 determines whether or not the number of read
errors of the number of errors (Read) 293 of the relevant entry
exceeds a prescribed read error-related threshold (Step S82).
The read error-related threshold is a larger value than the
write error-related threshold here.

In a case where the result thereof is that the number of read
errors exceeds the read error-related threshold (Step S82:Y),
the MP 121 advances the processing to Step S84. Alterna-
tively, in a case where the number of read errors does not
exceed the read error-related threshold (Step S82: N), the MP
121 determines whether or not the target lower-level storage
apparatus 180, for example, is a ReadOnly media, such as a
flash memory, which can be read even when a write is not
possible (Step S83).

In a case where the result of this determination is that target
lower-level storage apparatus 180 is not a ReadOnly media
(Step S83: N), the MP 121 advances the processing to Step
S84, and, alternatively, in a case where the target lower-level
storage apparatus 180 is a ReadOnly media (Step S83:Y),
advances the processing to Step S85.

In Step S84, the MP 121 configures “abnormal (inacces-
sible)” in the status 295 of the entry of the target lower-level
storage apparatus 180 of the drive status table 290.

In Step S85, the MP 121 configures “abnormal (W not
possible)” in the status 295 of the entry of the target lower-
level storage apparatus 180 of the drive status table 290.

In this failure detection processing, the type of failure in the
lower-level storage apparatus 180 is detected based on the
number of read errors and the number of write errors, but the
present invention is not limited to this, and, for example, the
MP 121 may issue a command to the lower-level storage
apparatus 180 for querying the lower-level storage apparatus
180 about the type of failure.

FIG. 35 is a diagram illustrating a write process related to
Example 7.

US 9,411,527 B2

33

A write process, for example, may be executed synchro-
nously with an /O command (either a write command or a
read command) from a host, or may be executed asynchro-
nously with an /O command from the host. The MP 121
determines whether or not data, which has not been reflected
in a storage apparatus (either a lower-level storage apparatus
180 or an external storage apparatus 40), exists in the CM 131
(Step S91). In a case where the result thereof is that unre-
flected data does not exist in the CM 131 (Step S91: N), the
MP 121 ends the write process.

Alternatively, in a case where unreflected data exists in the
CM 131 (Step S91:Y), the MP 121 determines whether or not
a rebuild-required parcel exists within the area for storing the
unreflected data (Step S92). The processing for this determi-
nation is the same as that of Step S13 of FIG. 11.

In a case where the result thereof is that a rebuild-required
parcel exists within the area for storing unreflected data (Step
S92:Y), the MP 121 advances the processing to Step S93,
and, alternatively, in a case where a parcel does not exist
within the area for storing unreflected data (Step S92: N), the
MP 121 executes a normal write process (Step S98), and
moves the processing to Step S91.

In Step S93, the MP 121 determines whether or not the
number of failed drives has exceeded the number of parities of
the RAID group comprising the area for storing the relevant
unreflected data. In a case where the result thereof is that the
number of failed drives does not exceed the number of parities
of the RAID group comprising the area for storing the rel-
evant unreflected data (Step S93: N), the MP 121 executes a
correction write process (Step S94). The correction write
process is the same as Step S24 of FIG. 12.

Alternatively, in a case where the number of failed drives
exceeds the number of parities of the RAID group comprising
the area for storing the relevant unreflected data (Step S93:Y),
the MP 121 references the rebuilt bitmap table 270 and deter-
mines whether or not the rebuild bit corresponding to the area
for storing the unreflected data is ON (1) (Step S95).

In a case where the result thereof is that the rebuild bit
corresponding to the parcel area for storing the unreflected
data is ON (Step S95:Y), the MP 121 executes a normal write
process (Step S98) and moves the processing to Step S91.

Alternatively, in a case where the rebuild bit corresponding
to the parcel area for storing the unreflected data is not ON
(Step S95: N), the MP 121 reads old data in the area corre-
sponding to the unreflected data from the lower-level storage
apparatus 180 in the abnormal (W not possible) state, merges
the relevant old data with the unreflected data (new data) in
the CM 131 to create a rebuilt data, reserves a new parcel for
storing rebuild data from non-failed drives to store the rebuild
data in the parcel (Step S96), configures the rebuild bit cor-
responding to the parcel area for storing the unreflected data
of'the rebuild bitmap 273 in the rebuilt bitmap table 270 to ON
(Step S97), and moves the processing to Step S91. In so
doing, the addition to the parcel mapping table 280 of an entry
showing the parcel in which the rebuild data is being stored
makes it possible to execute a host I/O with respect to the
rebuild data-storing parcel.

In the read process of Example 7, the MP 121, upon receiv-
ing a read request from the host 10, references the drive status
table 290, and since a case in which the failure status of the
lower-level storage apparatus 180 corresponding to the read
request is abnormal (W not possible) signifies that the rel-
evant lower-level storage apparatus 180 will appropriately
perform a read, reads the data corresponding to the read
request from the relevant lower-level storage apparatus 180 as
usual. According to the processing described above, even
when there is an abnormal drive, which exceeds the redun-

10

15

20

25

30

35

40

45

50

55

60

65

34

dancy, the processing of a host [/O can continue to be
executed in a case where the abnormality is (W not possible).
In this example, parcel mapping is managed, but the same
method may be implemented for a virtual page.

Example 8

A computer system related to Example 8 will be explained
next.

In a case where a RAID group comprising multiple lower-
level storage apparatuses 180, for example, is configured as
RAID6 so as to be able to perform a rebuild even when
multiple (for example, two) lower-level storage apparatuses
180 have failed, that is, is configured having a redundancy of
equal to or larger than two, and another lower-level storage
apparatus 180 also fails, Example 8 rebuilds the data of a row
of stripes, which is likely to be lost, on a priority basis. A
configuration with redundancy of equal to or larger than two
is not limited to RAIDG6, and, for example, may be a triple
mirror configuration.

FIG. 36 is a diagram illustrating a priority rebuild related to
Example 8.

FIG. 36 shows an example in which the virtual pool space
comprises 16 lower-level storage apparatuses 180, and the
virtual pool space is a RAID6 with a 6D+2P configuration. In
this drawing, reference signs, which have the numeral follow-
ing a “_” in common, such as D1_1, D2_1, D3_1, D4_1,
D5_1,1 D6_1, P_1, and Q_1, indicate data elements in the
same data unit and parity, that is, that the data elements and
parity are in the same row of stripes.

In a state where data elements and parity are being stored as
shown in FIG. 36, the RAID6 configuration makes it possible
to rebuild required data elements and parity even in a case
where the two lower-level storage apparatuses 180 on the left
side have failed. However, in a case where one more different
lower-level storage apparatus 180 also fails, there exists a data
element and/or parity (referred to as warning data), which is
likely to be unable to be rebuilt. Specifically, a stripe data
element, which belongs to a row of stripes in which two stripe
data elements of the same row of stripes are stored in the
failed lower-level storage apparatus 180, corresponds to this
unrebuildable stripe data element. In this drawing, as two
stripe data elements of the same row of stripes, which are
stored in the failed lower-level storage apparatus 180, there
are data element D2_2 and data element D3_2, and data
element D4_4 and data element D5_4. Hereinafter, a parcel,
which comprises warning data, will be called a warning par-
cel.

Consequently, in Example 8, a rebuild is performed by
placing priority on the warning data, which will be unable to
be rebuilt in a case where another lower-level storage appa-
ratus 180 fails. For example, the data element D3_2 and the
data element D5_4 shown in this drawing are rebuilt in
another lower-level storage apparatus 180 on a priority basis.
In accordance with this, a warning parcel can be rebuilt at
high speed even when yet another lower-level storage appa-
ratus 180 has failed, thereby increasingly the probability of
being able to appropriately rebuild a data element in the same
row of stripes as the data element D2_2. This probability is
characterized in that the probability increases the larger the
number of drives across which the row of stripes is distrib-
uted.

FIG. 37 is a diagram illustrating a status transition in a
higher-level storage apparatus related to Example 8.

FIG. 37 shows a status transition in the higher-level storage
apparatus 100, which manages a RAID group of RAID6 for
each redundancy.

US 9,411,527 B2

35

Since none of the lower-level storage apparatuses 180
(drives) have failed in the initial state, the higher-level storage
apparatus 100 is in a normal (Normal) state ST1, and redun-
dancy is two.

In the normal state ST1, when there is no spare area, which
is an area for saving data, the higher-level storage apparatus
100 transitions to a copy-back-in-progress state ST2. The
copy-back-in-progress state ST2 is a state in which process-
ing is underway for returning data, which has been rebuilt in
a spare area, to an area of a new drive from the spare area after
a failed drive has been replaced with a new drive. The redun-
dancy in the copy-back-in-progress state ST2 is two. In the
normal state ST1, in a case where one drive is blocked, the
higher-level storage apparatus 100 transitions to the rebuild-
in-progress state ST3. The rebuild-in-progress state ST3 is a
state in which data (e.g., data elements) stored in a blocked
drive is in the process of being rebuilt. The redundancy in the
rebuild-in-progress state ST3 is one.

In the copy-back-in-progress state ST2, in a case where a
copy-back for certain data has been completed, but data tar-
geted for copy-back still exists, the higher-level storage appa-
ratus 100 remains as-is in the copy-back-in-progress state
ST2. In a case where the copy-back of all data has been
completed in the copy-back-in-progress state ST2, the
higher-level storage apparatus 100 transitions to the normal
state ST1. Furthermore, in a case where one drive is blocked
in the copy-back-in-progress state ST2, the higher-level stor-
age apparatus 100 transitions to the rebuild-in-progress state
ST3.

In the rebuild-in-progress state ST3, in a case where there
is no spare area, which is an area for saving data, the higher-
level storage apparatus 100 transitions to a copy-back-in-
progress state ST4. The redundancy in the copy-back-in-
progress state ST4 is one. In a case where the drive is blocked
and warning parcel is appeared in the rebuild-in-progress
state ST3, the higher-level storage apparatus 100 transitions
to a priority rebuild-in-progress state ST6. The priority
rebuild-in-progress state ST6 is a state in which processing is
underway for rebuilding the warning data on a priority basis.
The process for rebuilding the warning data on a priority basis
will be called a priority rebuild here. The redundancy in the
priority rebuild-in-progress state ST6 is zero.

In a case where the copy-back of all the data has been
completed in the copy-back-in-progress state ST4, the
higher-level storage apparatus 100 transitions to the rebuild-
in-progress state ST3. In a case where a drive is blocked in the
copy-back-in-progress state ST4, the higher-level storage
apparatus 100 transitions to a copy-back-in-progress state
ST8. The redundancy in the copy-back-in-progress state ST8
is zero.

In a case where a drive is blocked in the priority rebuild-
in-progress state ST6, the higher-level storage apparatus 100
transitions to the failure (Failure) state ST9. The failure state
ST9 is a state in which a data rebuild is not possible. In a case
where there is no spare area, which is an area for saving data,
in the priority rebuild-in-progress state ST6, the higher-level
storage apparatus 100 transitions to the copy-back-in-
progress state ST8. The redundancy in the copy-back-in-
progress state ST8 is zero. In a case where a priority rebuild
has been completed in the priority rebuild-in-progress state
STé, the higher-level storage apparatus 100 transitions to a
remaining rebuild-in-progress state ST5. The remaining
rebuild-in-progress state ST5 is the state in which parcel data
other than the warning data is in the process of being rebuilt.
The redundancy in the remaining rebuild-in-progress state
ST5 is one.

10

15

20

25

30

35

40

45

50

55

60

65

36

In a case where a rebuild for data other than the warning
data in the warning parcel has been completed in the remain-
ing rebuild-in-progress state ST5, the higher-level storage
apparatus 100 transitions to the rebuild-in-progress state ST3.
In a case where a drive is blocked in the remaining rebuild-
in-progress state ST5, the higher-level storage apparatus 100
transitions to a remaining rebuild-in-progress <ongoing>
state ST7. The remaining rebuild-in-progress <ongoing>
state ST7 is a state in which warning data, which has
increased, is in the process of being rebuilt. The redundancy
in the remaining rebuild-in-progress <ongoing> state ST7 is
Zero.

In a case where a drive is blocked in the remaining rebuild-
in-progress <ongoing> state ST7, the higher-level storage
apparatus 100 transitions to the failure state ST9. In a case
where the rebuild of all the data in the warning parcel has been
completed in the remaining rebuild-in-progress <ongoing>
state ST7, the higher-level storage apparatus 100 transitions
to the rebuild-in-progress state ST3.

In a case where the copy-back of all the data has been
completed in the copy-back-in-progress state ST8, the
higher-level storage apparatus 100 transitions to the priority
rebuild-in-progress state ST6. In a case where one drive is
blocked in the copy-back-in-progress state ST8, the higher-
level storage apparatus 100 transitions to the failure state ST9.

FIG. 38 is a diagram showing an example of a stripe table
related to Example 8.

A shared memory 200 of Example 8 further stores a stripe
table 300 in the shared memory 200 of Example 1.

The stripe table 300 is for rapidly determining, based on a
physical drive number, the state of a physical parcel in a
lower-level storage apparatus 180 corresponding to this
physical drive number, and is a reverse lookup table for the
parcel mapping table 220. The stripe table 300 manages an
entry comprising the fields of a physical drive #301, a physi-
cal parcel #302, a virtual pool space number 303, an extent
#304, a drive offset #305, and a parcel status 306. Each field
is basically the same as the field of the same name shown in
FIG. 7.

FIG. 39 is a flowchart of a priority rebuild process related
to Example 8.

The priority rebuild process, for example, may be executed
ateach prescribed time, or may be executed when the MP 121
detects failures in two lower-level storage apparatuses 180.
The MP 121 computes a virtual pool space #, an extent #, and
a drive offset # corresponding to the relevant physical parcel
for the entry of each physical parcel for which the parcel
status 306 in the stripe table 300 is rebuild required (Step
S101).

Next, the MP 121, based on the computed virtual pool
space #, extent #, and drive offset #, checks whether or not the
extent (target extent) corresponding thereto comprises
another drive, which is in the failure state (rebuild required)
(Step S102).

In a case where the result thereof is that two failed drives
are included in the target extent, and, in addition, the data in
these drives has not been rebuilt (S103: Y), the MP 121
executes a data rebuild process for rebuilding the unrebuilt
data (Step S104), and advances the processing to Step S105,
and, alternatively, in a case where either two or more failed
drives are not included in the target extent, or the data is not
unrebuilt (S103: N), ends the priority rebuild processing.

In Step S105, the MP 121 determines whether or not all the
stripe data elements of the parcel to be rebuilt in the extent
have been rebuilt (Step S105), and in a case where all the
stripe data elements have not been rebuilt (Step S105: N),
moves the processing to Step S104.

US 9,411,527 B2

37

Alternatively, in a case where all the stripe data elements of
the parcel to be rebuilt in the extent have been rebuilt (Step
S105: Y), the MP 121 configures content (for example, a
blank) indicating rebuild-not-required in the parcel status 226
of'the process-target parcel entries in the parcel mapping table
220 and the stripe table 300 (Step S106), and moves the
processing to Step S101.

FIG. 40 is a diagram illustrating a data placement method
related to Example 8.

FIG. 40 shows an example in which the virtual pool space
comprises 16 lower-level storage apparatuses 180, and the
virtual pool space is a RAID6 with a 2D+2P configuration. In
this drawing, reference signs, which have the numeral such as
1, and 2, indicate extent number 222, which same number box
is parcel include in same extent. Data placement in F1G. 40 is
decided by formula. More specifically, the extent number 222
corresponding to physical drive number (#) 224 and physical
parcel number (#) 225 is calculated as following formula:
ExtentID(d, p)=((floor(d/S)+p*(d MOD S))MOD(D/S))+(D/
S)*p, which “d” is physical drive number (#) 224, “p” is
physical parcel number (#) 225, “D” is a number of whole
drives (D=20 in FIG. 40), “S” is a number of parcels in an
extent (S=4 in FIG. 40 with a 2D+2P configuration). The
drives which include gray parcels in FIG. 40 are read accessed
by rebuild process when lower-level storage apparatus 180
which physical drive number is 0 failed. Especially, if D/S is
prime number, read accessed by rebuild process is finely
distributed among the drives, parallel efficiency is increased,
the rebuild processing time is shortened.

FIG. 41 is a diagram illustrating warning parcels position
in a data placement method same as FIG. 40 related to
Example 8.

FIG. 41 is indicate parcels that are read accessed by rebuild
process when two lower-level storage apparatuses 180 which
physical drive number is 0 and 5 failed. Black parcels (which
included in extents which extent number is 20, 45, and 70) are
warning parcels, but they are limited to include in the few
drives (which drive numberis 10 and 15). In this case, priority
rebuild processing time is longer than FIG. 36 case, because
load is not balancing by distributed among the many drives,
but on the other hand, it can reduce the possibility of appear-
ance of data loss parcel by third failure of the drive, so it can
reduce data loss possibility in whole system.

Above formula is an example of efficient method, but the
present invention is not limited to this example, it may also be
implemented in shift some pattern of data layout based on the
above formula by changing mapping of physical drive num-
ber (#) 224 and physical parcel number (#) 225, or limited lost
data area to specific some drives when drives are failure by
limiting the combination of drives which include parcel in
extents by using parcel mapping table 220 described in FIG.
7.

According to the priority rebuild process, it is possible to
rebuild on a priority basis data with a high likelihood of being
lost, effectively enabling the prevention of data loss.

A number of examples have been explained hereinabove,
but it goes without saying that the present invention is not
limited to these examples, and that various changes can be
made without departing from the gist thereof.

REFERENCE SIGNS LIST

100: Higher-level storage apparatus, 121: Microprocessor
(MP), 142: Transfer buffer, 180: Lower-level storage appara-
tus, 182: Processor

10

40

45

38

The invention claimed is:

1. A storage system, comprising:

a control device; and

a plurality of storage devices for storing data,

wherein data is stored in a form of stripe rows including a

predetermined number of multiple stripe elements and at
least two redundancy codes,

wherein a total number of the plurality of storage devices is

larger than the predetermined number of the stripe ele-
ments composing one of the stripe rows,

wherein the stripe elements in each of the stripe rows are

stored in different storage devices, a combination of
stripe rows having the stripe elements stored in each one
of the storage devices is different among at least two of
the plurality of storage devices,

wherein the control device is configured to:

detect, from among the multiple stripe rows, at least two
stripe rows having at least one failed stripe element
stored in failed storage devices; and

rebuild, in parallel, stripe elements of the detected at
least two stripe rows, and,

wherein the rebuilding of the stripe elements of the

detected at least two stripe rows is executed in order of
the number of failed stripe elements in each stripe row.

2. The storage system according to the claim 1, wherein:

the number of redundancy codes in the stripe row is N

which is at least two, and

if there is no detected stripe rows having N failed stripe

elements, the control device is configured to rebuild the
stripe rows in order of the number of failed stripe ele-
ments in each stripe row.

3. The storage system according to the claim 1, wherein the
control device is configured to rebuild at least two stripe rows
whose stripe elements are stored in different storage devices,
in parallel.

4. The storage system according to the claim 1,

wherein the control device is configured to provide a vir-

tual volume including a virtual page to which a pool area
is allocated to store data, and

wherein the stripe elements in the stripe rows included in

the pool area allocated to one of the pages are stored in
the same combination of storage devices.

5. The storage system according to the claim 1, wherein the
data is stored in a Redundant Array of Independent Disks 6
(RAID 6) configuration.

6. The storage system according to the claim 1, wherein the
stripe elements stored in stripes of the at least two stripe rows,
the stripes being based on the same failed storage device, are
rebuilt prior to the stripe elements stored in the other stripes of
the at least two stripe rows.

7. The storage system according to the claim 1,

wherein the control device is configured to allocate a physi-

cal page in a pool space which comprises a plurality of
physical pages based on the plurality storage devices, to
a virtual page in a virtual volume which comprises a
plurality of virtual pages, and store the stripe elements
based on the data in a stripe row corresponding to the
allocated physical page,

wherein the plurality of physical pages comprise a plurality

of parcels,

wherein each of the plurality of parcels is consecutive areas

in a corresponding storage device and includes two or
more stripes which respectively corresponds to two or
more physical pages,

wherein the control device is configured to rebuild the

stripe elements in parcel units, and

US 9,411,527 B2
39 40

wherein stripe elements in a plurality of stripe rows have a
first arrangement or a second arrangement as defined
below:
the first arrangement is a random arrangement of the

stripe elements; and 5
the second arrangement is an arrangement where the
number of storage devices having the at least two
stripe rows is the same as the number of stripes
included in each of the at least two stripe rows.

#* #* #* #* #* 10

